4,096 research outputs found

    From Proximal Point Method to Nesterov's Acceleration

    Full text link
    The proximal point method (PPM) is a fundamental method in optimization that is often used as a building block for fast optimization algorithms. In this work, building on a recent work by Defazio (2019), we provide a complete understanding of Nesterov's accelerated gradient method (AGM) by establishing quantitative and analytical connections between PPM and AGM. The main observation in this paper is that AGM is in fact equal to a simple approximation of PPM, which results in an elementary derivation of the mysterious updates of AGM as well as its step sizes. This connection also leads to a conceptually simple analysis of AGM based on the standard analysis of PPM. This view naturally extends to the strongly convex case and also motivates other accelerated methods for practically relevant settings.Comment: 14 pages; Section 4 updated; Remark 5 added; comments would be appreciated

    Fast global convergence of gradient methods for high-dimensional statistical recovery

    Full text link
    Many statistical MM-estimators are based on convex optimization problems formed by the combination of a data-dependent loss function with a norm-based regularizer. We analyze the convergence rates of projected gradient and composite gradient methods for solving such problems, working within a high-dimensional framework that allows the data dimension \pdim to grow with (and possibly exceed) the sample size \numobs. This high-dimensional structure precludes the usual global assumptions---namely, strong convexity and smoothness conditions---that underlie much of classical optimization analysis. We define appropriately restricted versions of these conditions, and show that they are satisfied with high probability for various statistical models. Under these conditions, our theory guarantees that projected gradient descent has a globally geometric rate of convergence up to the \emph{statistical precision} of the model, meaning the typical distance between the true unknown parameter θ∗\theta^* and an optimal solution θ^\hat{\theta}. This result is substantially sharper than previous convergence results, which yielded sublinear convergence, or linear convergence only up to the noise level. Our analysis applies to a wide range of MM-estimators and statistical models, including sparse linear regression using Lasso (ℓ1\ell_1-regularized regression); group Lasso for block sparsity; log-linear models with regularization; low-rank matrix recovery using nuclear norm regularization; and matrix decomposition. Overall, our analysis reveals interesting connections between statistical precision and computational efficiency in high-dimensional estimation
    • …
    corecore