7,671 research outputs found

    Sampling-based Algorithms for Optimal Motion Planning

    Get PDF
    During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g., showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics Researc

    Optimal Sampling-Based Motion Planning under Differential Constraints: the Driftless Case

    Full text link
    Motion planning under differential constraints is a classic problem in robotics. To date, the state of the art is represented by sampling-based techniques, with the Rapidly-exploring Random Tree algorithm as a leading example. Yet, the problem is still open in many aspects, including guarantees on the quality of the obtained solution. In this paper we provide a thorough theoretical framework to assess optimality guarantees of sampling-based algorithms for planning under differential constraints. We exploit this framework to design and analyze two novel sampling-based algorithms that are guaranteed to converge, as the number of samples increases, to an optimal solution (namely, the Differential Probabilistic RoadMap algorithm and the Differential Fast Marching Tree algorithm). Our focus is on driftless control-affine dynamical models, which accurately model a large class of robotic systems. In this paper we use the notion of convergence in probability (as opposed to convergence almost surely): the extra mathematical flexibility of this approach yields convergence rate bounds - a first in the field of optimal sampling-based motion planning under differential constraints. Numerical experiments corroborating our theoretical results are presented and discussed
    • …
    corecore