18 research outputs found

    Unified lower bounds for interactive high-dimensional estimation under information constraints

    Full text link
    We consider the task of distributed parameter estimation using interactive protocols subject to local information constraints such as bandwidth limitations, local differential privacy, and restricted measurements. We provide a unified framework enabling us to derive a variety of (tight) minimax lower bounds for different parametric families of distributions, both continuous and discrete, under any â„“p\ell_p loss. Our lower bound framework is versatile and yields "plug-and-play" bounds that are widely applicable to a large range of estimation problems. In particular, our approach recovers bounds obtained using data processing inequalities and Cram\'er--Rao bounds, two other alternative approaches for proving lower bounds in our setting of interest. Further, for the families considered, we complement our lower bounds with matching upper bounds.Comment: Significant improvements: handle sparse parameter estimation, simplify and generalize argument

    Mean Estimation from One-Bit Measurements

    Full text link
    We consider the problem of estimating the mean of a symmetric log-concave distribution under the constraint that only a single bit per sample from this distribution is available to the estimator. We study the mean squared error as a function of the sample size (and hence the number of bits). We consider three settings: first, a centralized setting, where an encoder may release nn bits given a sample of size nn, and for which there is no asymptotic penalty for quantization; second, an adaptive setting in which each bit is a function of the current observation and previously recorded bits, where we show that the optimal relative efficiency compared to the sample mean is precisely the efficiency of the median; lastly, we show that in a distributed setting where each bit is only a function of a local sample, no estimator can achieve optimal efficiency uniformly over the parameter space. We additionally complement our results in the adaptive setting by showing that \emph{one} round of adaptivity is sufficient to achieve optimal mean-square error
    corecore