10,759 research outputs found

    A Novel Optical/digital Processing System for Pattern Recognition

    Get PDF
    This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network

    Network Sketching: Exploiting Binary Structure in Deep CNNs

    Full text link
    Convolutional neural networks (CNNs) with deep architectures have substantially advanced the state-of-the-art in computer vision tasks. However, deep networks are typically resource-intensive and thus difficult to be deployed on mobile devices. Recently, CNNs with binary weights have shown compelling efficiency to the community, whereas the accuracy of such models is usually unsatisfactory in practice. In this paper, we introduce network sketching as a novel technique of pursuing binary-weight CNNs, targeting at more faithful inference and better trade-off for practical applications. Our basic idea is to exploit binary structure directly in pre-trained filter banks and produce binary-weight models via tensor expansion. The whole process can be treated as a coarse-to-fine model approximation, akin to the pencil drawing steps of outlining and shading. To further speedup the generated models, namely the sketches, we also propose an associative implementation of binary tensor convolutions. Experimental results demonstrate that a proper sketch of AlexNet (or ResNet) outperforms the existing binary-weight models by large margins on the ImageNet large scale classification task, while the committed memory for network parameters only exceeds a little.Comment: To appear in CVPR201

    Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System

    Full text link
    A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175

    Supervised semantic labeling of places using information extracted from sensor data

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, rooms or doorways. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating interaction with humans. As an example, natural language terms like “corridor” or “room” can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we first propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from sensor range data into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. In this case we additionally use as features objects extracted from images. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation method. Alternatively, we apply associative Markov networks to classify geometric maps and compare the results with a relaxation approach. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments

    For the Jubilee of Vladimir Mikhailovich Chernov

    Get PDF
    On April 25, 2019, Vladimir Chernov celebrated his 70th birthday, Doctor of Physics and Mathematics, Chief Researcher at the Laboratory of Mathematical Methods of Image Processing of the Image Processing Systems Institute of the Russian Academy of Sciences (IPSI RAS), a branch of the Federal Science Research Center "Crystallography and Photonics RAS and part-Time Professor at the Department of Geoinformatics and Information Security of the Samara National Research University named after academician S.P. Korolev (Samara University). The article briefly describes the scientific and pedagogical achievements of the hero of the day. © Published under licence by IOP Publishing Ltd

    A linear approach for sparse coding by a two-layer neural network

    Full text link
    Many approaches to transform classification problems from non-linear to linear by feature transformation have been recently presented in the literature. These notably include sparse coding methods and deep neural networks. However, many of these approaches require the repeated application of a learning process upon the presentation of unseen data input vectors, or else involve the use of large numbers of parameters and hyper-parameters, which must be chosen through cross-validation, thus increasing running time dramatically. In this paper, we propose and experimentally investigate a new approach for the purpose of overcoming limitations of both kinds. The proposed approach makes use of a linear auto-associative network (called SCNN) with just one hidden layer. The combination of this architecture with a specific error function to be minimized enables one to learn a linear encoder computing a sparse code which turns out to be as similar as possible to the sparse coding that one obtains by re-training the neural network. Importantly, the linearity of SCNN and the choice of the error function allow one to achieve reduced running time in the learning phase. The proposed architecture is evaluated on the basis of two standard machine learning tasks. Its performances are compared with those of recently proposed non-linear auto-associative neural networks. The overall results suggest that linear encoders can be profitably used to obtain sparse data representations in the context of machine learning problems, provided that an appropriate error function is used during the learning phase
    corecore