213,170 research outputs found
Opportunities for large-scale energy storage in geological formations in mainland Portugal
This article presents the methodology and results of the first screening conducted in Portugal to identify geological formations suitable for large-scale storage of energy from renewable sources. The screening focused on the identification of adequate porous media rocks, salt formations and igneous host rocks that could act as reservoirs for gas (hydrogen or methane) storage, Compressed Air Energy Storage, Underground Pumped Hydro and Underground Thermal Energy Storage. Public access geological information was collected, compiled in a database and spatially referenced in a GIS environment. The GIS and database were cross-checked with criteria for selecting geological reservoirs and with existing or anticipated spatial, environmental and social constraints. In a third step the feasibility of deploying each large-scale energy storage technology in each prospective reservoir was assessed and classified according to confidence, ranging from unlikely to proven, and to proximity to areas with wind or solar energy potential, accessibility to power transmission lines and natural gas networks. The outcome is a first screening of priority sites to be studied at the local scale in future projects. Early target for detailed studies are the existing salt caverns and an abandoned salt mine in the Lusitanian Basin. Natural gas storage in salt formations is being carried in the region for decades, proving the adequacy of the salt formations and demonstrating the social acceptance. Porous media aquifers in the same Lusitanian basin may also hold an interesting potential, although there is considerable uncertainty due to the scarcity of geological data about deep aquifers. The Sines industrial cluster, in SW Portugal, is another interesting target area, due to the existence of a host rock with proven containment capacity. The technologies with the best potential for application in the Portuguese geologic context seem to be CAES and Underground Gas Storage linked to Power-to-gas projects
The impact of boundary conditions on CO2 capacity estimation in aquifers
The boundary conditions of an aquifer determine the extent to which fluids (including formation water
and CO2) and pressure can be transferred into adjacent geological formations, either laterally or vertically.
Aquifer boundaries can be faults, lithological boundaries, formation pinch-outs, salt walls, or outcrop. In
many cases compliance with regulations preventing CO2 storage influencing areas outside artificial
boundaries defined by non-geological criteria (international boundaries; license limits) may be necessary.
A bounded aquifer is not necessarily a closed aquifer.
The identification of an aquifer’s boundary conditions determines how CO2 storage capacity is estimated
in the earliest screening and characterization stages. There are different static capacity estimation methods
in use for closed systems and open systems. The method used has a significant impact on the final
capacity estimate.
The recent EU Directive (2009/31/EC) stated that where more than one storage site within a single
“hydraulic unit” (bounded aquifer volume) is being considered, the characterization process should
account for potential pressure interactions. The pressure interplay of multiple sites (or even the pressure
footprint of just one site) is heavily influenced by boundary conditions
Enabling onshore CO2 storage in Europe: fostering international cooperation around pilot and test sites
To meet the ambitious EC target of an 80% reduction in greenhouse gas emissions by 2050, CO2 Capture and Storage (CCS) needs to move rapidly towards full scale implementation with geological storage solutions both on and offshore. Onshore storage offers increased flexibility and reduced infrastructure and monitoring costs. Enabling onshore storage will support management of decarbonisation strategies at territory level while enhancing security of energy supply and local economic activities, and securing jobs across Europe. However, successful onshore storage also requires overcoming some unique technical and societal challenges. ENOS will provide crucial advances to help foster onshore CO2 storage across Europe through:
1. Developing, testing and demonstrating in the field, under "real-life conditions", key technologies specifically adapted to onshore storage.
2. Contributing to the creation of a favourable environment for onshore storage across Europe.
The ENOS site portfolio will provide a great opportunity for demonstration of technologies for safe and environmentally sound storage at relevant scale. Best practices will be developed using experience gained from the field experiments with the participation of local stakeholders and the lay public. This will produce improved integrated research outcomes and increase stakeholder understanding and confidence in CO2 storage. In this improved framework, ENOS will catalyse new onshore pilot and demonstration projects in new locations and geological settings across Europe, taking into account the site-specific and local socio-economic context. By developing technologies from TRL4/5 to TRL6 across the storage lifecycle, feeding the resultant knowledge and experience into training and education and cooperating at the pan-European and global level, ENOS will have a decisive impact on innovation and build the confidence needed for enabling onshore CO2 storage in Europe.
ENOS is initiating strong international collaboration between European researchers and their counterparts from the USA, Canada, South Korea, Australia and South Africa for sharing experience worldwide based on real-life onshore pilots and field experiments. Fostering experience-sharing and research alignment between existing sites is key to maximise the investment made at individual sites and to support the efficient large scale deployment of CCS. ENOS is striving to promote collaboration between sites in the world through a programme of site twinning, focus groups centered around operative issues and the creation of a leakage simulation alliance
CO2 dissolution in formation water as dominant sink in natural gas fields
A primary concern facing Carbon Capture and Storage (CCS) technology is the proven ability to safely store and monitor injected CO2 in geological formations on a long-term basis. However, it is extremely challenging to assess the long-term consequences of CO2 injection into the subsurface from decadal observations of existing CO2 disposal sites.Noble gases are conservative tracers within the subsurface, and combined with carbon stable isotopes, have proved to be extremely useful in determining both the origin of CO2 and how the CO2 is stored within natural CO2 reservoirs from around the world [1,2]. This presentation will identify and quantify the principal mechanism of CO2 phase removal in nine natural gas fields in North America, China and Europe. These natural gas fields are dominated by a CO2 phase and provide a natural analogue for assessing the geological storage of CO2 over millennial timescales. Our study highlights that in seven gas fields with siliciclastic or carbonate-dominated reservoir lithologies, dissolution in formation water at a pH of 5–5.8 is the major sink for CO2 [2]. This pH range is obtained by modelling the carbon isotope fractionation that results from dissolution of CO2(g) to varying proportions of H2CO3(aq) and HCO3-(aq). This is a major breakthrough as accurate subsurface pH measurements are notoriously difficult to obtain. In two fields with siliciclastic reservoir lithologies, some CO2 loss through precipitation as carbonate minerals cannot be ruled out, but this is minor compared to the amount of CO2 lost to dissolution in the formation water within the same fields.Our findings imply mineral fixation is a minor CO2 trapping mechanism within natural reservoirs and hence suggests long-term models of geological CO2 storage should consider the potential mobility of CO2 dissolved in water.[1] Gilfillan et al., (2008) GCA 72, 1174-1198.[2] Gilfillan et al., (2009) Nature, doi:10.1038/nature07852<br/
Environmental issues and the geological storage of CO2 : a discussion document
Increasing CO2 emissions will lead to climate change and ocean acidification with severe consequences for ecosystems and for human society. Strategies are being sought to reduce emissions including the geological storage of CO2. Existing studies operate within existing oil and gas regulatory frameworks, but if other non-oil reservoir geological formations are used these existing regulations may not apply. At UK and European levels the potential environmental impacts of uncontrolled CO2 releases from storage sites have been highlighted to be of significance for regulators. Thus a new regulatory framework may be needed. The precautionary principle is likely to be adopted by regulators, so it is important that the effects of acute and chronic exposures of ecosystems to CO2 leakages are evaluated. Consequently, existing regulations are likely to be developed to include specific recommendations concerning leakages. This review shows that many basic data simply do not exist to assist regulators in this process
Aquifer thermal energy storage program
The purpose of the Aquifer Thermal Energy Storage Demonstration Program is to stimulate the interest of industry by demonstrating the feasibility of using a geological formation for seasonal thermal energy storage, thereby, reducing crude oil consumption, minimizing thermal pollution, and significantly reducing utility capital investments required to account for peak power requirements. This purpose will be served if several diverse projects can be operated which will demonstrate the technical, economic, environmental, and institutional feasibility of aquifer thermal energy storage systems
Large scale underground energy storage for renewables integration: general criteria for reservoir identification and viable technologies.
The increasing integration of renewable energies in the electricity grid contributes considerably to achieve the European Union goals on energy and Greenhouse Gases (GHG) emissions reduction. However, it also brings problems to grid management. Large scale energy storage can provide the means for a better integration of the renewable energy sources, for balancing supply and demand, to increase energy security, to enhance a better management of the grid and also to converge towards a low carbon economy. Geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. One of the ways to ensure a large scale energy storage is to use the storage capacity in geological reservoir. In fact, there are several viable technologies for underground energy storage, as well as several types of underground reservoirs that can be considered. The geological energy storage technologies considered in this research were: Underground Gas Storage (UGS), Hydrogen Storage (HS), Compressed Air Energy Storage (CAES), Underground Pumped Hydro Storage (UPHS) and Thermal Energy Storage (TES). For these different types of underground energy storage technologies there are several types of geological reservoirs that can be suitable, namely: depleted hydrocarbon reservoirs, aquifers, salt formations and caverns, engineered rock caverns and abandoned mines. Specific site screening criteria are applicable to each of these reservoir types and technologies, which determines the viability of the reservoir itself, and of the technology for any particular site. This paper presents a review of the criteria applied in the scope of the Portuguese
contribution to the EU funded project ESTMAP – Energy Storage Mapping and Planning
Effect of sedimentary heterogeneities in the sealing formation on predictive analysis of geological CO<sub>2</sub> storage
Numerical models of geologic carbon sequestration (GCS) in saline aquifers use multiphase fluid flow-characteristic curves (relative permeability and capillary pressure) to represent the interactions of the non-wetting CO2 and the wetting brine. Relative permeability data for many sedimentary formations is very scarce, resulting in the utilisation of mathematical correlations to generate the fluid flow characteristics in these formations. The flow models are essential for the prediction of CO2 storage capacity and trapping mechanisms in the geological media. The observation of pressure dissipation across the storage and sealing formations is relevant for storage capacity and geomechanical analysis during CO2 injection.
This paper evaluates the relevance of representing relative permeability variations in the sealing formation when modelling geological CO2 sequestration processes. Here we concentrate on gradational changes in the lower part of the caprock, particularly how they affect pressure evolution within the entire sealing formation when duly represented by relative permeability functions.
The results demonstrate the importance of accounting for pore size variations in the mathematical model adopted to generate the characteristic curves for GCS analysis. Gradational changes at the base of the caprock influence the magnitude of pressure that propagates vertically into the caprock from the aquifer, especially at the critical zone (i.e. the region overlying the CO2 plume accumulating at the reservoir-seal interface). A higher degree of overpressure and CO2 storage capacity was observed at the base of caprocks that showed gradation. These results illustrate the need to obtain reliable relative permeability functions for GCS, beyond just permeability and porosity data. The study provides a formative principle for geomechanical simulations that study the possibility of pressure-induced caprock failure during CO2 sequestration
- …
