9,480 research outputs found

    Towards Real-Time, Country-Level Location Classification of Worldwide Tweets

    Get PDF
    In contrast to much previous work that has focused on location classification of tweets restricted to a specific country, here we undertake the task in a broader context by classifying global tweets at the country level, which is so far unexplored in a real-time scenario. We analyse the extent to which a tweet's country of origin can be determined by making use of eight tweet-inherent features for classification. Furthermore, we use two datasets, collected a year apart from each other, to analyse the extent to which a model trained from historical tweets can still be leveraged for classification of new tweets. With classification experiments on all 217 countries in our datasets, as well as on the top 25 countries, we offer some insights into the best use of tweet-inherent features for an accurate country-level classification of tweets. We find that the use of a single feature, such as the use of tweet content alone -- the most widely used feature in previous work -- leaves much to be desired. Choosing an appropriate combination of both tweet content and metadata can actually lead to substantial improvements of between 20\% and 50\%. We observe that tweet content, the user's self-reported location and the user's real name, all of which are inherent in a tweet and available in a real-time scenario, are particularly useful to determine the country of origin. We also experiment on the applicability of a model trained on historical tweets to classify new tweets, finding that the choice of a particular combination of features whose utility does not fade over time can actually lead to comparable performance, avoiding the need to retrain. However, the difficulty of achieving accurate classification increases slightly for countries with multiple commonalities, especially for English and Spanish speaking countries.Comment: Accepted for publication in IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE

    Firsthand Opiates Abuse on Social Media: Monitoring Geospatial Patterns of Interest Through a Digital Cohort

    Get PDF
    In the last decade drug overdose deaths reached staggering proportions in the US. Besides the raw yearly deaths count that is worrisome per se, an alarming picture comes from the steep acceleration of such rate that increased by 21% from 2015 to 2016. While traditional public health surveillance suffers from its own biases and limitations, digital epidemiology offers a new lens to extract signals from Web and Social Media that might be complementary to official statistics. In this paper we present a computational approach to identify a digital cohort that might provide an updated and complementary view on the opioid crisis. We introduce an information retrieval algorithm suitable to identify relevant subspaces of discussion on social media, for mining data from users showing explicit interest in discussions about opioid consumption in Reddit. Moreover, despite the pseudonymous nature of the user base, almost 1.5 million users were geolocated at the US state level, resembling the census population distribution with a good agreement. A measure of prevalence of interest in opiate consumption has been estimated at the state level, producing a novel indicator with information that is not entirely encoded in the standard surveillance. Finally, we further provide a domain specific vocabulary containing informal lexicon and street nomenclature extracted by user-generated content that can be used by researchers and practitioners to implement novel digital public health surveillance methodologies for supporting policy makers in fighting the opioid epidemic.Comment: Proceedings of the 2019 World Wide Web Conference (WWW '19

    Tracing the German Centennial Flood in the Stream of Tweets: First Lessons Learned

    Get PDF
    Social microblogging services such as Twitter result in massive streams of georeferenced messages and geolocated status updates. This real-time source of information is invaluable for many application areas, in particular for disaster detection and response scenarios. Consequently, a considerable number of works has dealt with issues of their acquisition, analysis and visualization. Most of these works not only assume an appropriate percentage of georeferenced messages that allows for detecting relevant events for a specific region and time frame, but also that these geolocations are reasonably correct in representing places and times of the underlying spatio-temporal situation. In this paper, we review these two key assumption based on the results of applying a visual analytics approach to a dataset of georeferenced Tweets from Germany over eight months witnessing several large-scale flooding situations throughout the country. Our results con rm the potential of Twitter as a distributed 'social sensor' but at the same time highlight some caveats in interpreting immediate results. To overcome these limits we explore incorporating evidence from other data sources including further social media and mobile phone network metrics to detect, confirm and refine events with respect to location and time. We summarize the lessons learned from our initial analysis by proposing recommendations and outline possible future work directions
    corecore