7 research outputs found

    Random Regular Graphs are not Asymptotically Gromov Hyperbolic

    Full text link
    In this paper we prove that random dd--regular graphs with d3d\geq 3 have traffic congestion of the order O(nlogd13(n))O(n\log_{d-1}^{3}(n)) where nn is the number of nodes and geodesic routing is used. We also show that these graphs are not asymptotically δ\delta--hyperbolic for any non--negative δ\delta almost surely as nn\to\infty.Comment: 6 pages, 2 figure

    On the hyperbolicity of random graphs

    Get PDF
    Let G=(V,E)G=(V,E) be a connected graph with the usual (graph) distance metric d:V×VN{0}d:V \times V \to N \cup \{0 \}. Introduced by Gromov, GG is δ\delta-hyperbolic if for every four vertices u,v,x,yVu,v,x,y \in V, the two largest values of the three sums d(u,v)+d(x,y),d(u,x)+d(v,y),d(u,y)+d(v,x)d(u,v)+d(x,y), d(u,x)+d(v,y), d(u,y)+d(v,x) differ by at most 2δ2\delta. In this paper, we determinate the value of this hyperbolicity for most binomial random graphs.Comment: 20 page

    Geodesics and Almost Geodesic Cycles in Random Regular Graphs

    No full text
    A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance d(G)(u, v) is at least d(C)(u, v) - e(n). Let omega(n) be any function tending to infinity with n. We consider a random d-regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n)= log(d-1)log(d-1) n+omega(n) and vertical bar C vertical bar =2 log(d-1) n+O(omega(n)). Along the way, we obtain results on near-geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 66: 115-136, 2011FAPESP[2007/56496-3]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)MITACSMITACSNSERCNSERCCanadian Research Chairs ProgramCanadian Research Chairs Progra

    Properties of graphs with large girth

    Get PDF
    This thesis is devoted to the analysis of a class of iterative probabilistic algorithms in regular graphs, called locally greedy algorithms, which will provide bounds for graph functions in regular graphs with large girth. This class is useful because, by conveniently setting the parameters associated with it, we may derive algorithms for some well-known graph problems, such as algorithms to find a large independent set, a large induced forest, or even a small dominating set in an input graph G. The name ``locally greedy" comes from the fact that, in an algorithm of this class, the probability associated with the random selection of a vertex v is determined by the current state of the vertices within some fixed distance of v. Given r > 2 and an r-regular graph G, we determine the expected performance of a locally greedy algorithm in G, depending on the girth g of the input and on the degree r of its vertices. When the girth of the graph is sufficiently large, this analysis leads to new lower bounds on the independence number of G and on the maximum number of vertices in an induced forest in G, which, in both cases, improve the bounds previously known. It also implies bounds on the same functions in graphs with large girth and maximum degree r and in random regular graphs. As a matter of fact, the asymptotic lower bounds on the cardinality of a maximum induced forest in a random regular graph improve earlier bounds, while, for independent sets, our bounds coincide with asymptotic lower bounds first obtained by Wormald. Our result provides an alternative proof of these bounds which avoids sharp concentration arguments. The main contribution of this work lies in the method presented rather than in these particular new bounds. This method allows us, in some sense, to directly analyse prioritised algorithms in regular graphs, so that the class of locally greedy algorithms, or slight modifications thereof, may be applied to a wider range of problems in regular graphs with large girth
    corecore