27 research outputs found

    Geodesic spanners for points on a polyhedral terrain

    Get PDF
    Let S be a set S of n points on a polyhedral terrain T in R3, and let " > 0 be a xed constant. We prove that S admits a (2 + ")-spanner with O(n log n) edges with respect to the geodesic distance. This is the rst spanner with constant spanning ratio and a near-linear number of edges for points on a terrain. On our way to this result, we prove that any set of n weighted points in Rd admits an additively weighted (2 + ")-spanner with O(n) edges; this improves the previously best known bound on the spanning ratio (which was 5 + "), and almost matches the lower bound

    Fault-tolerant additive weighted geometric spanners

    Full text link
    Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in SS lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.Comment: a few update

    The Complexity of Geodesic Spanners

    Get PDF

    The Complexity of Geodesic Spanners

    Get PDF
    A geometric t-spanner for a set S of n point sites is an edge-weighted graph for which the (weighted) distance between any two sites p, q ∈ S is at most t times the original distance between p and q. We study geometric t-spanners for point sets in a constrained two-dimensional environment P. In such cases, the edges of the spanner may have non-constant complexity. Hence, we introduce a novel spanner property: the spanner complexity, that is, the total complexity of all edges in the spanner. Let S be a set of n point sites in a simple polygon P with m vertices. We present an algorithm to construct, for any constant ε > 0 and fixed integer k ≥ 1, a (2k + ε)-spanner with complexity O(mn1/k + n log2 n) in O(n log2 n + m log n + K) time, where K denotes the output complexity. When we consider sites in a polygonal domain P with holes, we can construct such a (2k + ε)-spanner of similar complexity in O(n2 log m + nm log m + K) time. Additionally, for any constant ε ∈ (0, 1) and integer constant t ≥ 2, we show a lower bound for the complexity of any (t − ε)-spanner of (Equation presented)

    Approximating Nearest Neighbor Distances

    Full text link
    Several researchers proposed using non-Euclidean metrics on point sets in Euclidean space for clustering noisy data. Almost always, a distance function is desired that recognizes the closeness of the points in the same cluster, even if the Euclidean cluster diameter is large. Therefore, it is preferred to assign smaller costs to the paths that stay close to the input points. In this paper, we consider the most natural metric with this property, which we call the nearest neighbor metric. Given a point set P and a path γ\gamma, our metric charges each point of γ\gamma with its distance to P. The total charge along γ\gamma determines its nearest neighbor length, which is formally defined as the integral of the distance to the input points along the curve. We describe a (3+ε)(3+\varepsilon)-approximation algorithm and a (1+ε)(1+\varepsilon)-approximation algorithm to compute the nearest neighbor metric. Both approximation algorithms work in near-linear time. The former uses shortest paths on a sparse graph using only the input points. The latter uses a sparse sample of the ambient space, to find good approximate geodesic paths.Comment: corrected author nam

    09111 Abstracts Collection -- Computational Geometry

    Get PDF
    From March 8 to March 13, 2009, the Dagstuhl Seminar 09111 ``Computational Geometry \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore