729 research outputs found

    Unsupervised Learning of Edges

    Full text link
    Data-driven approaches for edge detection have proven effective and achieve top results on modern benchmarks. However, all current data-driven edge detectors require manual supervision for training in the form of hand-labeled region segments or object boundaries. Specifically, human annotators mark semantically meaningful edges which are subsequently used for training. Is this form of strong, high-level supervision actually necessary to learn to accurately detect edges? In this work we present a simple yet effective approach for training edge detectors without human supervision. To this end we utilize motion, and more specifically, the only input to our method is noisy semi-dense matches between frames. We begin with only a rudimentary knowledge of edges (in the form of image gradients), and alternate between improving motion estimation and edge detection in turn. Using a large corpus of video data, we show that edge detectors trained using our unsupervised scheme approach the performance of the same methods trained with full supervision (within 3-5%). Finally, we show that when using a deep network for the edge detector, our approach provides a novel pre-training scheme for object detection.Comment: Camera ready version for CVPR 201

    No-reference Image Denoising Quality Assessment

    Get PDF
    A wide variety of image denoising methods are available now. However, the performance of a denoising algorithm often depends on individual input noisy images as well as its parameter setting. In this paper, we present a no-reference image denoising quality assessment method that can be used to select for an input noisy image the right denoising algorithm with the optimal parameter setting. This is a challenging task as no ground truth is available. This paper presents a data-driven approach to learn to predict image denoising quality. Our method is based on the observation that while individual existing quality metrics and denoising models alone cannot robustly rank denoising results, they often complement each other. We accordingly design denoising quality features based on these existing metrics and models and then use Random Forests Regression to aggregate them into a more powerful unified metric. Our experiments on images with various types and levels of noise show that our no-reference denoising quality assessment method significantly outperforms the state-of-the-art quality metrics. This paper also provides a method that leverages our quality assessment method to automatically tune the parameter settings of a denoising algorithm for an input noisy image to produce an optimal denoising result.Comment: 17 pages, 41 figures, accepted by Computer Vision Conference (CVC) 201

    Feature Driven Learning Techniques for 3D Shape Segmentation

    Get PDF
    Segmentation is a fundamental problem in 3D shape analysis and machine learning. The abil-ity to partition a 3D shape into meaningful or functional parts is a vital ingredient of many down stream applications like shape matching, classification and retrieval. Early segmentation methods were based on approaches like fitting primitive shapes to parts or extracting segmen-tations from feature points. However, such methods had limited success on shapes with more complex geometry. Observing this, research began using geometric features to aid the segmen-tation, as certain features (e.g. Shape Diameter Function (SDF)) are less sensitive to complex geometry. This trend was also incorporated in the shift to set-wide segmentations, called co-segmentation, which provides a consistent segmentation throughout a shape dataset, meaning similar parts have the same segment identifier. The idea of co-segmentation is that a set of same class shapes (i.e. chairs) contain more information about the class than a single shape would, which could lead to an overall improvement to the segmentation of the individual shapes. Over the past decade many different approaches of co-segmentation have been explored covering supervised, unsupervised and even user-driven active learning. In each of the areas, there has been widely adopted use of geometric features to aid proposed segmentation algorithms, with each method typically using different combinations of features. The aim of this thesis is to ex-plore these different areas of 3D shape segmentation, perform an analysis of the effectiveness of geometric features in these areas and tackle core issues that currently exist in the literature.Initially, we explore the area of unsupervised segmentation, specifically looking at co-segmentation, and perform an analysis of several different geometric features. Our analysis is intended to compare the different features in a single unsupervised pipeline to evaluate their usefulness and determine their strengths and weaknesses. Our analysis also includes several features that have not yet been explored in unsupervised segmentation but have been shown effective in other areas.Later, with the ever increasing popularity of deep learning, we explore the area of super-vised segmentation and investigate the current state of Neural Network (NN) driven techniques. We specifically observe limitations in the current state-of-the-art and propose a novel Convolu-tional Neural Network (CNN) based method which operates on multi-scale geometric features to gain more information about the shapes being segmented. We also perform an evaluation of several different supervised segmentation methods using the same input features, but with vary-ing complexity of model design. This is intended to see if the more complex models provide a significant performance increase.Lastly, we explore the user-driven area of active learning, to tackle the large amounts of inconsistencies in current ground truth segmentation, which are vital for most segmentation methods. Active learning has been used to great effect for ground truth generation in the past, so we present a novel active learning framework using deep learning and geometric features to assist the user in co-segmentation of a dataset. Our method emphasises segmentation accu-racy while minimising user effort, providing an interactive visualisation for co-segmentation analysis and the application of automated optimisation tools.In this thesis we explore the effectiveness of different geometric features across varying segmentation tasks, providing an in-depth analysis and comparison of state-of-the-art methods
    • …
    corecore