2,889 research outputs found

    Climate Change Impact Assessment for Surface Transportation in the Pacific Northwest and Alaska

    Get PDF
    WA-RD 772.

    Improving Resilience of Transport Instrastructure to Climate Change and other natural and Manmande events based on the combined use of Terrestrial and Airbone Sensors and Advanced Modelling Tools

    Get PDF
    The project PANOPTIS, funded by the European Commission under the H2020 Programme, aims at increasing the resilience of the transport infrastructures (focusing on roads) and ensuring reliable network availability under unfavourable conditions, such as extreme weather, landslides, and earthquakes. The main target is to combine downscaled climate change scenarios (applied to road infrastructures) with structural and geotechnical simulation tools and with actual data from a multi-sensor network (terrestrial and airborne-based), so as to provide the operators with an integrated tool able to support more effective management of their infrastructures at planning, maintenance and operation level. During the first stage of the project, the consortium will develop advanced technologies to monitor and control transport infrastructures, such as a Geotechnical and Structural Simulation Tool (SGSA) to predict structural and geotechnical risks in road infrastructures; drone-technologies applied to road upkeep and incident management; improved computer vision and machine learning techniques for damage diagnosis of infrastructure, and early warning systems to help operators identify and communicate emerging systemic risks. At the same time, experts in climate modelling, will analyse the possible short and long term effects of climate change on transport infrastructure (e.g. flooding, heavier snows). All the information from the different sensors, models and applications will be integrated and processed through a unique Resilience Assessment Platform that will support operators in the introduction of adaptation and mitigation strategies based on multi-risk scenarios. During the second stage of the project, ACCIONA Engineering will implement the developed technologies and methodologies in a section of the Spanish A-2 motorway, in the province of Guadalajara. PANOPTIS integrated Platform will help optimize the management and maintenance of the Ministry of Public Works' concession for a 77.5-km section, all in collaboration with ACCIONA Infrastructure Maintenance (AMISA) and ACCIONA Concessions. In parallel, PANOPTIS platform will also be implemented in a section of 62 Km of a Greek motorway, renowned for its seismic activity. The trials in Greece hosted by the operator Egnatia Odos will integrate the motorway that serves the Airport of Thessaloniki. So the scenario will integrate a modal transfer segment.Le projet PANOPTIS, financé par la Commission européenne dans le cadre du programme H2020, vise à accroître la résilience de l'infrastructure de transport et à permettre une disponibilité fiable du réseau dans des conditions défavorables, telles que les conditions météorologiques extrêmes, les glissements de terrain et les tremblements de terre. L'objectif principal doit être associé à un réseau multi-capteurs (terrestre et aéroporté) pour permettre une gestion plus efficace de leurs infrastructures au niveau de la planification, de la maintenance et de l'exploitation. Au cours de la première phase du projet, le consortium développera des technologies avancées pour surveiller et contrôler les infrastructures de transport, telles que l'outil de simulation géotechnique et structurelle (SGSA) permettant de prévoir les risques structurels et géotechniques dans les infrastructures routières; technologies de drones appliquées à l'entretien des routes et à la gestion des incidents; la vision par ordinateur et les techniques d'apprentissage automatique pour le diagnostic des infrastructures et les systèmes d'alerte précoce. Dans le même temps, des experts en modélisation du climat analyseront le potentiel du changement climatique sur les infrastructures de transport (par exemple, les inondations, les neiges plus lourdes). Toutes les informations provenant des différents capteurs, modèles et applications seront intégrées dans un scénario unique comportant plusieurs risques. Au cours de la deuxième phase du projet, ACCIONA Engineering mettra en oeuvre les technologies et les méthodologies dans une section de l'autoroute espagnole A-2, dans la province de Guadalajara. La plate-forme intégrée PANOPTIS contribuera à optimiser la gestion et la maintenance de la concession du ministère des Travaux publics pour une section de 77,5 km, le tout en collaboration avec ACCIONA Infrastructure Maintenance (AMISA) et ACCIONA Concessions. Parallèlement, la plate-forme PANOPTIS sera également mise en oeuvre dans une section de 62 Km d'une autoroute grecque réputée pour son activité sismique. Les essais en Grèce organisés par l'opérateur Egnatia Odos vont rejoindre l'aéroport de Thessalonique. Le scénario intégrera donc un segment de transfert modal

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Seismic Reliability Assessment of Aging Highway Bridge Networks with Field Instrumentation Data and Correlated Failures. II: Application

    Get PDF
    The Bridge Reliability in Networks (BRAN) methodology introduced in the companion paper is applied to evaluate the reliability of part of the highway bridge network in South Carolina, USA, under a selected seismic scenario. The case study demonstrates Bayesian updating of deterioration parameters across bridges after spatial interpolation of data acquired from limited instrumented bridges. The updated deterioration parameters inform aging bridge seismic fragility curves through multidimensional integration of parameterized fragility models, which are utilized to derive bridge failure probabilities. The paper establishes the correlation structure among bridge failures from three information sources to generate realizations of bridge failures for network level reliability assessment by Monte Carlo analysis. Positive correlations improve the reliability of the case study network, also predicted from the network topology. The benefits of the BRAN methodology are highlighted in its applicability to large networks while addressing some of the existing gaps in bridge network reliability studies

    Development of Geospatial Models for Multi-Criteria Decision Making in Traffic Environmental Impacts of Heavy Vehicle Freight Transportation

    Get PDF
    Heavy vehicle freight transportation is one of the primary contributors to the socio-economic development, but it has great influence on traffic environment. To comprehensively and more accurately quantify the impacts of heavy vehicles on road infrastructure performance, a series of geospatial models are developed for both geographically global and local assessment of the impacts. The outcomes are applied in flexible multi-criteria decision making for the industrial practice of road maintenance and management

    Indirect impact of landslide hazards on transportation infrastructure

    Get PDF
    This thesis examines the indirect impact of natural hazards on infrastructure networks. It addresses several key themes and issues for hazard assessment, network modelling and risk assessment using the case study of landslides impacting the national road network in Scotland, United Kingdom. The research follows four distinct stages. First, a landslide susceptibility model is developed using a database of landslide occurrences, spatial data sets and logistic regression. The model outputs indicate the terrain characteristics that are associated with increased landslide potential, including critical slope angles and south westerly aspects associated with increased rates of solar irradiance and precipitation. The results identify the hillslopes and road segments that are most prone to disruption by landslides and these indicate that 40 % (1,700 / 4,300 km) of Scotland s motorways and arterial roads (i.e. strategic road network) are susceptible to landslides and this is above previous assessments. Second, a novel user-equilibrium traffic model is developed using UK Census origin-destination tables. The traffic model calculates the additional travel time and cost (i.e. indirect impacts) caused by network disruptions due to landslide events. The model is applied to calculate the impact of historic scenarios and for sets of plausible landslide events generated using the landslide susceptibility model. Impact assessments for historic scenarios are 29 to 83 % greater than previous, including £1.2 million of indirect impacts over 15 days of disruption at the A83 Rest and Be Thankful landslide October 2007. The model results indicate that the average impact of landslides is £64 k per day of disruption, and up to £130 k per day on the most critical road segments in Scotland. In addition to identifying critical road segments with both high impact and high susceptibility to landslides, the study indicates that the impact of landslides is concentrated away from urban centres to the central and north-west regions of Scotland that are heavily reliant on road and haulage-based industries such as seasonal tourism, agriculture and craft distilling. The third research element is the development of landslide initiation thresholds using weather radar data. The thresholds classify the rainfall conditions that are most commonly associated with landslide occurrence in Scotland, improving knowledge of the physical initiation processes and their likelihood. The thresholds are developed using a novel optimal-point threshold selection technique, high resolution radar and new rain variables that provide spatio-temporally normalised thresholds. The thresholds highlight the role of the 12-day antecedent hydrological condition of soils as a precursory factor in controlling the rain conditions that trigger landslides. The new results also support the observation that landslides occur more frequently in the UK during the early autumn and winter seasons when sequences or clustering of multiple cyclonic-storm systems is common in periods lasting 5 to 15 days. Fourth, the three previous elements are combined to evaluate the landslide hazard of the strategic road segments and a prototype risk assessment model is produced - a catastrophe model. The catastrophe model calculates the annual average loss and aggregated exceedance probability of losses due to the indirect impact of landslides in Scotland. Beyond application to cost-benefit analyses for landslide mitigation efforts, the catastrophe model framework is applicable to the study of other natural hazards (e.g. flooding), combinations of hazards, and other infrastructure networks

    Machine Learning Framework for the Estimation of Average Speed in Rural Road Networks with OpenStreetMap Data

    Get PDF
    Average speed information, which is essential for routing applications, is often missing in the freely available OpenStreetMap (OSM) road network. In this contribution, we propose an estimation framework, including different machine learning (ML) models that estimate rural roads’ average speed based on current road information in OSM. We rely on three datasets covering two regions in Chile and Australia. Google Directions API data serves as reference data. An appropriate estimation framework is presented, which involves supervised ML models, unsupervised clustering, and dimensionality reduction to generate new input features. The regression performance of each model with different input feature modes is evaluated on each dataset. The best performing model results in a coefficient of determination R2^{2}=80.43%, which is significantly better than previous approaches relying on domain-knowledge. Overall, the potential of the ML-based estimation framework to estimate the average speed with OSM road network data is demonstrated. This ML-based approach is data-driven and does not require any domain knowledge. In the future, we intend to focus on the generalization ability of the estimation framework concerning its application in different regions worldwide. The implementation of our estimation framework for an exemplary dataset is provided on GitHub
    corecore