76,125 research outputs found

    Genetic Diversity of Selected Upland Rice Genotypes (Oryza sativa L.) for Grain Yield and Related Traits

    Get PDF
    Seventy-seven upland rice genotypes including popular cultivars in Nigeria and introduced varieties selected from across rice-growing regions of the world were evaluated under optimal upland ecology. These genotypes were characterised for 10 traits and the quantitative data subjected to Pearson correlation matrix, Principal Component Analysis and cluster analysis to determine the level of diversity and degree of association existing between grain yield and its related component traits. Yield and most related component traits exhibited higher PCV compared to growth parameters. Yield had the highest PCV (41.72%) while all other parameters had low to moderate GCV. Genetic Advance (GA) ranged from 9.88% for plant height at maturity to 41.08% for yield. High heritability estimates were recorded for 1000 grain weight (88.71%), days to 50% flowering (86.67%) and days to 85% maturity (71.98%). Furthermore, grain yield showed significant positive correlation with days to 50% flowering and number of panicles m-2. Three cluster groups were obtained based on the UPGMA and the first three principal components explained about 64.55% of the total variation among the 10 characters. The PCA results suggests that characters such as grain yield, days to flowering, leaf area and plant height at maturity were the principal discriminatory traits for this rice germplasm indicating that selection in favour of these traits might be effective in this population and environment

    Genotypic Characterization of Non-O157 Shiga Toxin–Producing Escherichia coli in Beef Abattoirs of Argentina

    Get PDF
    The non-O157 Shiga toxin-producing Escherichia coli (STEC) contamination in carcasses and feces of 811 bovines in nine beef abattoirs from Argentina was analyzed during a period of 17 months. The feces of 181 (22.3%) bovines were positive for non-O157 STEC, while 73 (9.0%) of the carcasses showed non-O157 STEC contamination. Non-O157 STEC strains isolated from feces (227) and carcasses (80) were characterized. The main serotypes identified were O178:H19, O8:H19, O130:H11, and O113:H21, all of which have produced sporadic cases of hemolytic-uremic syndrome in Argentina and worldwide. Twenty-two (7.2%) strains carried a fully virulent stx/eae/ehxA genotype. Among them, strains of serotypes O103:[H2], O145:NM, and O111:NM represented 4.8% of the isolates. XbaI pulsed-field gel electrophoresis pattern analysis showed 234 different patterns, with 76 strains grouped in 30 clusters. Nine of the clusters grouped strains isolated from feces and from carcasses of the same or different bovines in a lot, while three clusters were comprised of strains distributed in more than one abattoir. Patterns AREXSX01.0157, AREXBX01.0015, and AREXPX01.0013 were identified as 100% compatible with the patterns of one strain isolated from a hemolytic-uremic syndrome case and two strains previously isolated from beef medallions, included in the Argentine PulseNet Database. In this survey, 4.8% (39 of 811) of the bovine carcasses appeared to be contaminated with non- O157 STEC strains potentially capable of producing sporadic human disease, and a lower proportion (0.25%) with strains able to produce outbreaks of severe disease.Fil: Masana, Marcelo. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Agroindustria. Instituto de Tecnología de Alimentos; ArgentinaFil: D´Astek, B. A.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud “Dr. C. G. Malbrán”; ArgentinaFil: Palladino, Pablo Martín. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Agroindustria. Instituto de Tecnología de Alimentos; ArgentinaFil: Galli, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentina. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; ArgentinaFil: del Castillo, Lourdes Leonor. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Agroindustria. Instituto de Tecnología de Alimentos; ArgentinaFil: Carbonari, Claudia Carolina. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; ArgentinaFil: Leotta, Gerardo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentina. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; ArgentinaFil: Vilacoba, Elisabet. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; ArgentinaFil: Irino, K.. Instituto Adolfo Lutz. Seção de Bacteriologia; BrasilFil: Rivas, M.. Dirección Nacional de Institutos de Investigación. Administración Nacional de Laboratorios e Institutos de Salud. Instituto Nacional de Enfermedades Infecciosas; Argentin

    A Multinational Analysis of Mutations and Heterogeneity in PZase, RpsA, and PanD Associated with Pyrazinamide Resistance in M/XDR Mycobacterium tuberculosis.

    Get PDF
    Pyrazinamide (PZA) is an important first-line drug in all existing and new tuberculosis (TB) treatment regimens. PZA-resistance in M. tuberculosis is increasing, especially among M/XDR cases. Noted issues with PZA Drug Susceptibility Testing (DST) have driven the search for alternative tests. This study provides a comprehensive assessment of PZA molecular diagnostics in M/XDR TB cases. A set of 296, mostly XDR, clinical M. tuberculosis isolates from four countries were subjected to DST for eight drugs, confirmatory Wayne's assay, and whole-genome sequencing. Three genes implicated in PZA resistance, pncA, rpsA, and panD were investigated. Assuming all non-synonymous mutations cause resistance, we report 90% sensitivity and 65% specificity for a pncA-based molecular test. The addition of rpsA and panD potentially provides 2% increase in sensitivity. Molecular heterogeneity in pncA was associated with resistance and should be evaluated as a diagnostic tool. Mutations near the N-terminus and C-terminus of PZase were associated with East-Asian and Euro-American lineages, respectively. Finally, Euro-American isolates are most likely to have a wild-type PZase and escape molecular detection. Overall, the 8-10% resistance without markers may point to alternative mechanisms of resistance. Confirmatory mutagenesis may improve the disconcertingly low specificity but reduce sensitivity since not all mutations may cause resistance

    Molecular characterization of Salmonella Enteritidis : comparison of an optimized multi-locus variable-number of tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis

    Get PDF
    Salmonella Enteritidis (SE) is a genetically homogenous serovar, which makes optimal subtype discrimination crucial for epidemiological research. This study describes the development and evaluation of an optimized multiple-locus variable number tandem-repeat assay (MLVA) for characterization of SE. The typeability and discriminatory power of this MLVA was determined on a selected collection of 60 SE isolates and compared with pulsed-field gel electrophoresis (PFGE) using restriction enzymes XbaI, NotI, or SfiI. In addition, the estimated Wallace coefficient (W) was calculated to assess the congruence of the typing methods. Selection of epidemiologically unrelated isolates and more related isolates (originating from layer farms) was also based on the given phage type (PT). When targeting six loci, MLVA generated 16 profiles, while PFGE produced 10, 9, and 16 pulsotypes using XbaI, NotI, and SfiI, respectively, for the entire strain collection. For the epidemiologically unrelated isolates, MLVA had the highest discriminatory power and showed good discrimination between isolates from different layer farms and among isolates from the same layer farm. MLVA performed together with PT showed higher discriminatory power compared to PFGE using one restriction enzyme together with PT. Results showed that combining PT with the optimized MLVA presented here provides a rapid typing tool with good discriminatory power for characterizing SE isolates of various origins and isolates originating from the same layer farm

    Determination of population structure and stock composition of chum salmon (Oncorhynchus keta) in Russia determined with microsatellites

    Get PDF
    Variation at 14 microsatellite loci was examined in 34 chum salmon (Oncorhynchus keta) populations from Russia and evaluated for its use in the determination of population structure and stock composition in simulated mixed-stock fishery samples. The genetic differentiation index (Fst) over all populations and loci was 0.017, and individual locus values ranged from 0.003 to 0.054. Regional population structure was observed, and populations from Primorye, Sakhalin Island, and northeast Russia were the most distinct. Microsatellite variation provided evidence of a more fine-scale population structure than those that had previously been demonstrated with other genetic-based markers. Analysis of simulated mixed-stock samples indicated that accurate and precise regional estimates of stock composition were produced when the microsatellites were used to estimate stock compositions. Microsatellites can be used to determine stock composition in geographically separate Russian coastal chum salmon fisheries and provide a greater resolution of stock composition and population structure than that previously provided with other techniques

    Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians

    Get PDF
    The naturally mummified remains of a mother and two daughters found in an 18th century Hungarian crypt were analysed, using multiple molecular genetic techniques to examine the epidemiology and evolution of tuberculosis. DNA was amplified from a number of targets on the Mycobacterium tuberculosis genome, including DNA from IS6110, gyrA, katG codon 463, oxyR, dnaA–dnaN, mtp40, plcD and the direct repeat (DR) region. The strains present in the mummified remains were identified as M. tuberculosis and not Mycobacterium bovis, from katG and gyrA genotyping, PCR from the oxyR and mtp40 loci, and spoligotyping. Spoligotyping divided the samples into two strain types, and screening for a deletion in the MT1801–plcD region initially divided the strains into three types. Further investigation showed, however, that an apparent deletion was due to poor DNA preservation. By comparing the effect of PCR target size on the yield of amplicon, a clear difference was shown between 18th century and modern M. tuberculosis DNA. A two-centre system was used to confirm the findings of this study, which clearly demonstrate the value of using molecular genetic techniques to study historical cases of tuberculosis and the care required in drawing conclusions. The genotyping and spoligotyping results are consistent with the most recent theory of the evolution and spread of the modern tuberculosis epidemic
    corecore