2,198 research outputs found
FunGenAgent: An Agent-Based Approach for Workflow Composition in Homology Functional Genomics
mRNAstab : a web application for mRNA stability analysis
Eukaryotic gene expression is regulated both at the transcription and the mRNA degradation levels. The implementation of functional genomics methods that allow the simultaneous measurement of transcription (TR) and degradation (DR) rates for thousands of mRNAs is a huge improvement in this field. One of the best established methods for mRNA stability determination is genomic run-on (GRO). It allows the measurement of DR, TR and mRNA levels during cell dynamic responses. Here, we offer a software package that provides improved algorithms for determination of mRNA stability during dynamic GRO experiments
Fourteen years of R/qtl: Just barely sustainable
R/qtl is an R package for mapping quantitative trait loci (genetic loci that
contribute to variation in quantitative traits) in experimental crosses. Its
development began in 2000. There have been 38 software releases since 2001. The
latest release contains 35k lines of R code and 24k lines of C code, plus 15k
lines of code for the documentation. Challenges in the development and
maintenance of the software are discussed. A key to the success of R/qtl is
that it remains a central tool for the chief developer's own research work, and
so its maintenance is of selfish importance.Comment: Previously submission to First Workshop on Sustainable Software for
Science: Practice and Experiences (WSSSPE),
http://wssspe.researchcomputing.org.uk; revised for submission to the Journal
of Open Research Software, http://openresearchsoftware.metajnl.com
Lipid Metabolism and Comparative Genomics
Unilever asked the Study Group to focus on two problems. The first concerned dysregulated lipid metabolism which is a feature of many diseases including metabolic syndrome, obesity and coronary heart disease. The Study Group was asked to develop a model of the kinetics of lipoprotein metabolism between healthy and obese states incorporating the activities of key enzymes.
The second concerned the use of comparative genomics in understanding and comparing metabolic networks in bacterium. Comparative genomics is a method to make inferences on the genome of a new organism using information of a previously charaterised organism. The first mathematical question is how one would quantify such a metabolic map in a statistical sense, in particular, where there are different levels of confidence for presense of different parts of the map. The next and most important question is how one can design a measurement strategy to maximise the confidence in the accuracy of the metabolic map
Information visualization for DNA microarray data analysis: A critical review
Graphical representation may provide effective means of making sense of the complexity and sheer volume of data produced by DNA microarray experiments that monitor the expression patterns of thousands of genes simultaneously. The ability to use ldquoabstractrdquo graphical representation to draw attention to areas of interest, and more in-depth visualizations to answer focused questions, would enable biologists to move from a large amount of data to particular records they are interested in, and therefore, gain deeper insights in understanding the microarray experiment results. This paper starts by providing some background knowledge of microarray experiments, and then, explains how graphical representation can be applied in general to this problem domain, followed by exploring the role of visualization in gene expression data analysis. Having set the problem scene, the paper then examines various multivariate data visualization techniques that have been applied to microarray data analysis. These techniques are critically reviewed so that the strengths and weaknesses of each technique can be tabulated. Finally, several key problem areas as well as possible solutions to them are discussed as being a source for future work
Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis.
In Arabidopsis, a large subset of heat responsive genes exhibits diurnal or circadian oscillations. However, to what extent the dimension of time and/or the circadian clock contribute to heat stress responses remains largely unknown. To determine the direct contribution of time of day and/or the clock to differential heat stress responses, we probed wild-type and mutants of the circadian clock genes CCA1, LHY, PRR7, and PRR9 following exposure to heat (37 °C) and moderate cold (10 °C) in the early morning (ZT1) and afternoon (ZT6). Thousands of genes were differentially expressed in response to temperature, time of day, and/or the clock mutation. Approximately 30% more genes were differentially expressed in the afternoon compared to the morning, and heat stress significantly perturbed the transcriptome. Of the DEGs (~3000) specifically responsive to heat stress, ~70% showed time of day (ZT1 or ZT6) occurrence of the transcriptional response. For the DEGs (~1400) that are shared between ZT1 and ZT6, we observed changes to the magnitude of the transcriptional response. In addition, ~2% of all DEGs showed differential responses to temperature stress in the clock mutants. The findings in this study highlight a significant role for time of day in the heat stress responsive transcriptome, and the clock through CCA1 and LHY, appears to have a more profound role than PRR7 and PRR9 in modulating heat stress responses during the day. Our results emphasize the importance of considering the dimension of time in studies on abiotic stress responses in Arabidopsis
- …
