2,583 research outputs found

    Genomic Sequence Is Highly Predictive of Local Nucleosome Depletion

    Get PDF
    The regulation of DNA accessibility through nucleosome positioning is important for transcription control. Computational models have been developed to predict genome-wide nucleosome positions from DNA sequences, but these models consider only nucleosome sequences, which may have limited their power. We developed a statistical multi-resolution approach to identify a sequence signature, called the N-score, that distinguishes nucleosome binding DNA from non-nucleosome DNA. This new approach has significantly improved the prediction accuracy. The sequence information is highly predictive for local nucleosome enrichment or depletion, whereas predictions of the exact positions are only modestly more accurate than a null model, suggesting the importance of other regulatory factors in fine-tuning the nucleosome positions. The N-score in promoter regions is negatively correlated with gene expression levels. Regulatory elements are enriched in low N-score regions. While our model is derived from yeast data, the N-score pattern computed from this model agrees well with recent high-resolution protein-binding data in human

    High-throughput sequencing reveals a simple model of nucleosome energetics

    Full text link
    We use nucleosome maps obtained by high-throughput sequencing to study sequence specificity of intrinsic histone-DNA interactions. In contrast with previous approaches, we employ an analogy between a classical one-dimensional fluid of finite-size particles in an arbitrary external potential and arrays of DNA-bound histone octamers. We derive an analytical solution to infer free energies of nucleosome formation directly from nucleosome occupancies measured in high-throughput experiments. The sequence-specific part of free energies is then captured by fitting them to a sum of energies assigned to individual nucleotide motifs. We have developed hierarchical models of increasing complexity and spatial resolution, establishing that nucleosome occupancies can be explained by systematic differences in mono- and dinucleotide content between nucleosomal and linker DNA sequences, with periodic dinucleotide distributions and longer sequence motifs playing a secondary role. Furthermore, similar sequence signatures are exhibited by control experiments in which genomic DNA is either sonicated or digested with micrococcal nuclease in the absence of nucleosomes, making it possible that current predictions based on high-throughput nucleosome positioning maps are biased by experimental artifacts.Comment: 36 pages, 13 figure

    Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals

    Get PDF
    The detailed positions of nucleosomes profoundly impact gene regulation and are partly encoded by the genomic DNA sequence. However, less is known about the functional consequences of this encoding. Here, we address this question using a genome-wide map of ∼380,000 yeast nucleosomes that we sequenced in their entirety. Utilizing the high resolution of our map, we refine our understanding of how nucleosome organizations are encoded by the DNA sequence and demonstrate that the genomic sequence is highly predictive of the in vivo nucleosome organization, even across new nucleosome-bound sequences that we isolated from fly and human. We find that Poly(dA:dT) tracts are an important component of these nucleosome positioning signals and that their nucleosome-disfavoring action results in large nucleosome depletion over them and over their flanking regions and enhances the accessibility of transcription factors to their cognate sites. Our results suggest that the yeast genome may utilize these nucleosome positioning signals to regulate gene expression with different transcriptional noise and activation kinetics and DNA replication with different origin efficiency. These distinct functions may be achieved by encoding both relatively closed (nucleosome-covered) chromatin organizations over some factor binding sites, where factors must compete with nucleosomes for DNA access, and relatively open (nucleosome-depleted) organizations over other factor sites, where factors bind without competition

    Structural features based genome-wide characterization and prediction of nucleosome organization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleosome distribution along chromatin dictates genomic DNA accessibility and thus profoundly influences gene expression. However, the underlying mechanism of nucleosome formation remains elusive. Here, taking a structural perspective, we systematically explored nucleosome formation potential of genomic sequences and the effect on chromatin organization and gene expression in <it>S. cerevisiae</it>.</p> <p>Results</p> <p>We analyzed twelve structural features related to flexibility, curvature and energy of DNA sequences. The results showed that some structural features such as DNA denaturation, DNA-bending stiffness, Stacking energy, Z-DNA, Propeller twist and free energy, were highly correlated with in vitro and in vivo nucleosome occupancy. Specifically, they can be classified into two classes, one positively and the other negatively correlated with nucleosome occupancy. These two kinds of structural features facilitated nucleosome binding in centromere regions and repressed nucleosome formation in the promoter regions of protein-coding genes to mediate transcriptional regulation. Based on these analyses, we integrated all twelve structural features in a model to predict more accurately nucleosome occupancy in vivo than the existing methods that mainly depend on sequence compositional features. Furthermore, we developed a novel approach, named DLaNe, that located nucleosomes by detecting peaks of structural profiles, and built a meta predictor to integrate information from different structural features. As a comparison, we also constructed a hidden Markov model (HMM) to locate nucleosomes based on the profiles of these structural features. The result showed that the meta DLaNe and HMM-based method performed better than the existing methods, demonstrating the power of these structural features in predicting nucleosome positions.</p> <p>Conclusions</p> <p>Our analysis revealed that DNA structures significantly contribute to nucleosome organization and influence chromatin structure and gene expression regulation. The results indicated that our proposed methods are effective in predicting nucleosome occupancy and positions and that these structural features are highly predictive of nucleosome organization.</p> <p>The implementation of our DLaNe method based on structural features is available online.</p

    Identification of H3K4me1-associated proteins at mammalian enhancers.

    Get PDF
    Enhancers act to regulate cell-type-specific gene expression by facilitating the transcription of target genes. In mammalian cells, active or primed enhancers are commonly marked by monomethylation of histone H3 at lysine 4 (H3K4me1) in a cell-type-specific manner. Whether and how this histone modification regulates enhancer-dependent transcription programs in mammals is unclear. In this study, we conducted SILAC mass spectrometry experiments with mononucleosomes and identified multiple H3K4me1-associated proteins, including many involved in chromatin remodeling. We demonstrate that H3K4me1 augments association of the chromatin-remodeling complex BAF to enhancers in vivo and that, in vitro, H3K4me1-marked nucleosomes are more efficiently remodeled by the BAF complex. Crystal structures of the BAF component BAF45C indicate that monomethylation, but not trimethylation, is accommodated by BAF45C's H3K4-binding site. Our results suggest that H3K4me1 has an active role at enhancers by facilitating binding of the BAF complex and possibly other chromatin regulators

    G+C content dominates intrinsic nucleosome occupancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relative preference of nucleosomes to form on individual DNA sequences plays a major role in genome packaging. A wide variety of DNA sequence features are believed to influence nucleosome formation, including periodic dinucleotide signals, poly-A stretches and other short motifs, and sequence properties that influence DNA structure, including base content. It was recently shown by Kaplan et al. that a probabilistic model using composition of all 5-mers within a nucleosome-sized tiling window accurately predicts intrinsic nucleosome occupancy across an entire genome <it>in vitro</it>. However, the model is complicated, and it is not clear which specific DNA sequence properties are most important for intrinsic nucleosome-forming preferences.</p> <p>Results</p> <p>We find that a simple linear combination of only 14 simple DNA sequence attributes (G+C content, two transformations of dinucleotide composition, and the frequency of eleven 4-bp sequences) explains nucleosome occupancy <it>in vitro </it>and <it>in vivo </it>in a manner comparable to the Kaplan model. G+C content and frequency of AAAA are the most important features. G+C content is dominant, alone explaining ~50% of the variation in nucleosome occupancy <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our findings provide a dramatically simplified means to predict and understand intrinsic nucleosome occupancy. G+C content may dominate because it both reduces frequency of poly-A-like stretches and correlates with many other DNA structural characteristics. Since G+C content is enriched or depleted at many types of features in diverse eukaryotic genomes, our results suggest that variation in nucleotide composition may have a widespread and direct influence on chromatin structure.</p

    Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features.

    Get PDF
    Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors

    The Impact of the Nucleosome Code on Protein-Coding Sequence Evolution in Yeast

    Get PDF
    Coding sequence evolution was once thought to be the result of selection on optimal protein function alone. Selection can, however, also act at the RNA level, for example, to facilitate rapid translation or ensure correct splicing. Here, we ask whether the way DNA works also imposes constraints on coding sequence evolution. We identify nucleosome positioning as a likely candidate to set up such a DNA-level selective regime and use high-resolution microarray data in yeast to compare the evolution of coding sequence bound to or free from nucleosomes. Controlling for gene expression and intra-gene location, we find a nucleosome-free β€œlinker” sequence to evolve on average 5–6% slower at synonymous sites. A reduced rate of evolution in linker is especially evident at the 5β€² end of genes, where the effect extends to non-synonymous substitution rates. This is consistent with regular nucleosome architecture in this region being important in the context of gene expression control. As predicted, codons likely to generate a sequence unfavourable to nucleosome formation are enriched in linker sequence. Amino acid content is likewise skewed as a function of nucleosome occupancy. We conclude that selection operating on DNA to maintain correct positioning of nucleosomes impacts codon choice, amino acid choice, and synonymous and non-synonymous rates of evolution in coding sequence. The results support the exclusion model for nucleosome positioning and provide an alternative interpretation for runs of rare codons. As the intimate association of histones and DNA is a universal characteristic of genic sequence in eukaryotes, selection on coding sequence composition imposed by nucleosome positioning should be phylogenetically widespread
    • …
    corecore