5 research outputs found

    Genome surveyor 2.0: cis-regulatory analysis in Drosophila

    Get PDF
    Genome Surveyor 2.0 is a web-based tool for discovery and analysis of cis-regulatory elements in Drosophila, built on top of the GBrowse genome browser for convenient visualization. Genome Surveyor was developed as a tool for predicting transcription factor (TF) binding targets and cis-regulatory modules (CRMs/enhancers), based on motifs representing experimentally determined DNA binding specificities. Since its first publication, we have added substantial new functionality (e.g. phylogenetic averaging of motif scores from multiple species, and a novel CRM discovery technique), increased the number of supported motifs about 4-fold (from approximately 100 to approximately 400), added provisions for evolutionary comparison across many more Drosophila species (from 2 to 12), and improved the user-interface. The server is free and open to all users, and there is no login requirement. Address: http://veda.cs.uiuc.edu/gs

    Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants

    Get PDF
    Cys2-His2 zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129 zinc finger sets from Drosophila using a bacterial one-hybrid system. This data set contains the DNA-binding specificities for at least one encoded ZFP from 70 unique genes and 23 alternate splice isoforms representing the largest set of characterized ZFPs from any organism described to date. These recognition motifs can be used to predict genomic binding sites for these factors within the fruit fly genome. Subsets of fingers from these ZFPs were characterized to define their orientation and register on their recognition sequences, thereby allowing us to define the recognition diversity within this finger set. We find that the characterized fingers can specify 47 of the 64 possible DNA triplets. To confirm the utility of our finger recognition models, we employed subsets of Drosophila fingers in combination with an existing archive of artificial zinc finger modules to create ZFPs with novel DNA-binding specificity. These hybrids of natural and artificial fingers can be used to create functional zinc finger nucleases for editing vertebrate genomes
    corecore