2 research outputs found

    Genetic-Gated Networks for Deep Reinforcement

    Full text link
    We introduce the Genetic-Gated Networks (G2Ns), simple neural networks that combine a gate vector composed of binary genetic genes in the hidden layer(s) of networks. Our method can take both advantages of gradient-free optimization and gradient-based optimization methods, of which the former is effective for problems with multiple local minima, while the latter can quickly find local minima. In addition, multiple chromosomes can define different models, making it easy to construct multiple models and can be effectively applied to problems that require multiple models. We show that this G2N can be applied to typical reinforcement learning algorithms to achieve a large improvement in sample efficiency and performance

    Multi-Path Policy Optimization

    Full text link
    Recent years have witnessed a tremendous improvement of deep reinforcement learning. However, a challenging problem is that an agent may suffer from inefficient exploration, particularly for on-policy methods. Previous exploration methods either rely on complex structure to estimate the novelty of states, or incur sensitive hyper-parameters causing instability. We propose an efficient exploration method, Multi-Path Policy Optimization (MPPO), which does not incur high computation cost and ensures stability. MPPO maintains an efficient mechanism that effectively utilizes a population of diverse policies to enable better exploration, especially in sparse environments. We also give a theoretical guarantee of the stable performance. We build our scheme upon two widely-adopted on-policy methods, the Trust-Region Policy Optimization algorithm and Proximal Policy Optimization algorithm. We conduct extensive experiments on several MuJoCo tasks and their sparsified variants to fairly evaluate the proposed method. Results show that MPPO significantly outperforms state-of-the-art exploration methods in terms of both sample efficiency and final performance.Comment: AAMAS-202
    corecore