8 research outputs found

    CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features

    Full text link
    In this paper we propose a crossover operator for evolutionary algorithms with real values that is based on the statistical theory of population distributions. The operator is based on the theoretical distribution of the values of the genes of the best individuals in the population. The proposed operator takes into account the localization and dispersion features of the best individuals of the population with the objective that these features would be inherited by the offspring. Our aim is the optimization of the balance between exploration and exploitation in the search process. In order to test the efficiency and robustness of this crossover, we have used a set of functions to be optimized with regard to different criteria, such as, multimodality, separability, regularity and epistasis. With this set of functions we can extract conclusions in function of the problem at hand. We analyze the results using ANOVA and multiple comparison statistical tests. As an example of how our crossover can be used to solve artificial intelligence problems, we have applied the proposed model to the problem of obtaining the weight of each network in a ensemble of neural networks. The results obtained are above the performance of standard methods

    Feature Subset Selection in Intrusion Detection Using Soft Computing Techniques

    Get PDF
    Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool such as Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, accurate detection of network attack is imperative. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. Such weaknesses of the existing techniques have motivated the research presented in this thesis. One of the weaknesses of the existing intrusion detection approaches is the usage of a raw dataset for classification but the classifier may get confused due to redundancy and hence may not classify correctly. To overcome this issue, Principal Component Analysis (PCA) has been employed to transform raw features into principal features space and select the features based on their sensitivity. The sensitivity is determined by the values of eigenvalues. The recent approaches use PCA to project features space to principal feature space and select features corresponding to the highest eigenvalues, but the features corresponding to the highest eigenvalues may not have the optimal sensitivity for the classifier due to ignoring many sensitive features. Instead of using traditional approach of selecting features with the highest eigenvalues such as PCA, this research applied a Genetic Algorithm (GA) to search the principal feature space that offers a subset of features with optimal sensitivity and the highest discriminatory power. Based on the selected features, the classification is performed. The Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification purpose due to their proven ability in classification. This research work uses the Knowledge Discovery and Data mining (KDD) cup dataset, which is considered benchmark for evaluating security detection mechanisms. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates

    Pose-invariant, model-based object recognition, using linear combination of views and Bayesian statistics

    Get PDF
    This thesis presents an in-depth study on the problem of object recognition, and in particular the detection of 3-D objects in 2-D intensity images which may be viewed from a variety of angles. A solution to this problem remains elusive to this day, since it involves dealing with variations in geometry, photometry and viewing angle, noise, occlusions and incomplete data. This work restricts its scope to a particular kind of extrinsic variation; variation of the image due to changes in the viewpoint from which the object is seen. A technique is proposed and developed to address this problem, which falls into the category of view-based approaches, that is, a method in which an object is represented as a collection of a small number of 2-D views, as opposed to a generation of a full 3-D model. This technique is based on the theoretical observation that the geometry of the set of possible images of an object undergoing 3-D rigid transformations and scaling may, under most imaging conditions, be represented by a linear combination of a small number of 2-D views of that object. It is therefore possible to synthesise a novel image of an object given at least two existing and dissimilar views of the object, and a set of linear coefficients that determine how these views are to be combined in order to synthesise the new image. The method works in conjunction with a powerful optimization algorithm, to search and recover the optimal linear combination coefficients that will synthesize a novel image, which is as similar as possible to the target, scene view. If the similarity between the synthesized and the target images is above some threshold, then an object is determined to be present in the scene and its location and pose are defined, in part, by the coefficients. The key benefits of using this technique is that because it works directly with pixel values, it avoids the need for problematic, low-level feature extraction and solution of the correspondence problem. As a result, a linear combination of views (LCV) model is easy to construct and use, since it only requires a small number of stored, 2-D views of the object in question, and the selection of a few landmark points on the object, the process which is easily carried out during the offline, model building stage. In addition, this method is general enough to be applied across a variety of recognition problems and different types of objects. The development and application of this method is initially explored looking at two-dimensional problems, and then extending the same principles to 3-D. Additionally, the method is evaluated across synthetic and real-image datasets, containing variations in the objects’ identity and pose. Future work on possible extensions to incorporate a foreground/background model and lighting variations of the pixels are examined

    Feature Subset Selection in Intrusion Detection Using Soft Computing Techniques

    Get PDF
    Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool such as Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, accurate detection of network attack is imperative. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. Such weaknesses of the existing techniques have motivated the research presented in this thesis. One of the weaknesses of the existing intrusion detection approaches is the usage of a raw dataset for classification but the classifier may get confused due to redundancy and hence may not classify correctly. To overcome this issue, Principal Component Analysis (PCA) has been employed to transform raw features into principal features space and select the features based on their sensitivity. The sensitivity is determined by the values of eigenvalues. The recent approaches use PCA to project features space to principal feature space and select features corresponding to the highest eigenvalues, but the features corresponding to the highest eigenvalues may not have the optimal sensitivity for the classifier due to ignoring many sensitive features. Instead of using traditional approach of selecting features with the highest eigenvalues such as PCA, this research applied a Genetic Algorithm (GA) to search the principal feature space that offers a subset of features with optimal sensitivity and the highest discriminatory power. Based on the selected features, the classification is performed. The Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification purpose due to their proven ability in classification. This research work uses the Knowledge Discovery and Data mining (KDD) cup dataset, which is considered benchmark for evaluating security detection mechanisms. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates

    Genetic object recognition using combinations of views

    No full text
    corecore