4,748 research outputs found

    Genetic Algorithm with Optimal Recombination for the Asymmetric Travelling Salesman Problem

    Full text link
    We propose a new genetic algorithm with optimal recombination for the asymmetric instances of travelling salesman problem. The algorithm incorporates several new features that contribute to its effectiveness: (i) Optimal recombination problem is solved within crossover operator. (ii) A new mutation operator performs a random jump within 3-opt or 4-opt neighborhood. (iii) Greedy constructive heuristic of W.Zhang and 3-opt local search heuristic are used to generate the initial population. A computational experiment on TSPLIB instances shows that the proposed algorithm yields competitive results to other well-known memetic algorithms for asymmetric travelling salesman problem.Comment: Proc. of The 11th International Conference on Large-Scale Scientific Computations (LSSC-17), June 5 - 9, 2017, Sozopol, Bulgari

    The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm

    Get PDF
    The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances

    Development of Heuristic Approaches for Last-Mile Delivery TSP with a Truck and Multiple Drones

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are gaining momentum in many civil and military sectors. An example is represented by the logistics sector, where UAVs have been proven to be able to improve the efficiency of the process itself, as their cooperation with trucks can decrease the delivery time and reduce fuel consumption. In this paper, we first state a mathematical formulation of the Travelling Salesman Problem (TSP) applied to logistic routing, where a truck cooperates synchronously with multiple UAVs for parcel delivery. Then, we propose, implement, and compare different sub-optimal routing approaches to the formulated mFSTSP (multiple Flying Sidekick Travelling Salesman Problem) since the inherent combinatorial computational complexity of the problem makes it unattractable for commercial Mixed-Integer Linear Programming (MILP) solvers. A local search algorithm, two hybrid genetic algorithms that permutate feasible and infeasible solutions, and an alternative ad-hoc greedy method are evaluated in terms of the total delivery time of the output schedule. For the sake of the evaluation, the savings in terms of delivery time over the well-documented truck-only TSP solution are investigated for each proposed routing solution, and this is repeated for two different scenarios. Monte Carlo simulations corroborate the results

    A hybrid genetic algorithm and inver over approach for the travelling salesman problem

    Get PDF
    This article posted here with permission of the IEEE - Copyright @ 2010 IEEEThis paper proposes a two-phase hybrid approach for the travelling salesman problem (TSP). The first phase is based on a sequence based genetic algorithm (SBGA) with an embedded local search scheme. Within the SBGA, a memory is introduced to store good sequences (sub-tours) extracted from previous good solutions and the stored sequences are used to guide the generation of offspring via local search during the evolution of the population. Additionally, we also apply some techniques to adapt the key parameters based on whether the best individual of the population improves or not and maintain the diversity. After SBGA finishes, the hybrid approach enters the second phase, where the inver over (IO) operator, which is a state-of-the-art algorithm for the TSP, is used to further improve the solution quality of the population. Experiments are carried out to investigate the performance of the proposed hybrid approach in comparison with several relevant algorithms on a set of benchmark TSP instances. The experimental results show that the proposed hybrid approach is efficient in finding good quality solutions for the test TSPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1

    A sequence based genetic algorithm with local search for the travelling salesman problem

    Get PDF
    The standard Genetic Algorithm often suffers from slow convergence for solving combinatorial optimization problems. In this study, we present a sequence based genetic algorithm (SBGA) for the symmetric travelling salesman problem (TSP). In our proposed method, a set of sequences are extracted from the best individuals, which are used to guide the search of SBGA. Additionally, some procedures are applied to maintain the diversity by breaking the selected sequences into sub tours if the best individual of the population does not improve. SBGA is compared with the inver-over operator, a state-of-the-art algorithm for the TSP, on a set of benchmark TSPs. Experimental results show that the convergence speed of SBGA is very promising and much faster than that of the inver-over algorithm and that SBGA achieves a similar solution quality on all test TSPs
    • ā€¦
    corecore