2 research outputs found

    Survey of XAI in digital pathology

    Full text link
    Artificial intelligence (AI) has shown great promise for diagnostic imaging assessments. However, the application of AI to support medical diagnostics in clinical routine comes with many challenges. The algorithms should have high prediction accuracy but also be transparent, understandable and reliable. Thus, explainable artificial intelligence (XAI) is highly relevant for this domain. We present a survey on XAI within digital pathology, a medical imaging sub-discipline with particular characteristics and needs. The review includes several contributions. Firstly, we give a thorough overview of current XAI techniques of potential relevance for deep learning methods in pathology imaging, and categorise them from three different aspects. In doing so, we incorporate uncertainty estimation methods as an integral part of the XAI landscape. We also connect the technical methods to the specific prerequisites in digital pathology and present findings to guide future research efforts. The survey is intended for both technical researchers and medical professionals, one of the objectives being to establish a common ground for cross-disciplinary discussions

    Contrastive Explanation: A Structural-Model Approach

    Full text link
    This paper presents a model of contrastive explanation using structural casual models. The topic of causal explanation in artificial intelligence has gathered interest in recent years as researchers and practitioners aim to increase trust and understanding of intelligent decision-making. While different sub-fields of artificial intelligence have looked into this problem with a sub-field-specific view, there are few models that aim to capture explanation more generally. One general model is based on structural causal models. It defines an explanation as a fact that, if found to be true, would constitute an actual cause of a specific event. However, research in philosophy and social sciences shows that explanations are contrastive: that is, when people ask for an explanation of an event -- the fact -- they (sometimes implicitly) are asking for an explanation relative to some contrast case; that is, "Why P rather than Q?". In this paper, we extend the structural causal model approach to define two complementary notions of contrastive explanation, and demonstrate them on two classical problems in artificial intelligence: classification and planning. We believe that this model can help researchers in subfields of artificial intelligence to better understand contrastive explanation
    corecore