11,259 research outputs found

    SCAN: Learning Hierarchical Compositional Visual Concepts

    Get PDF
    The seemingly infinite diversity of the natural world arises from a relatively small set of coherent rules, such as the laws of physics or chemistry. We conjecture that these rules give rise to regularities that can be discovered through primarily unsupervised experiences and represented as abstract concepts. If such representations are compositional and hierarchical, they can be recombined into an exponentially large set of new concepts. This paper describes SCAN (Symbol-Concept Association Network), a new framework for learning such abstractions in the visual domain. SCAN learns concepts through fast symbol association, grounding them in disentangled visual primitives that are discovered in an unsupervised manner. Unlike state of the art multimodal generative model baselines, our approach requires very few pairings between symbols and images and makes no assumptions about the form of symbol representations. Once trained, SCAN is capable of multimodal bi-directional inference, generating a diverse set of image samples from symbolic descriptions and vice versa. It also allows for traversal and manipulation of the implicit hierarchy of visual concepts through symbolic instructions and learnt logical recombination operations. Such manipulations enable SCAN to break away from its training data distribution and imagine novel visual concepts through symbolically instructed recombination of previously learnt concepts

    Latent Variable Model for Multi-modal Translation

    Get PDF
    In this work, we propose to model the interaction between visual and textual features for multi-modal neural machine translation (MMT) through a latent variable model. This latent variable can be seen as a multi-modal stochastic embedding of an image and its description in a foreign language. It is used in a target-language decoder and also to predict image features. Importantly, our model formulation utilises visual and textual inputs during training but does not require that images be available at test time. We show that our latent variable MMT formulation improves considerably over strong baselines, including a multi-task learning approach (Elliott and K\'ad\'ar, 2017) and a conditional variational auto-encoder approach (Toyama et al., 2016). Finally, we show improvements due to (i) predicting image features in addition to only conditioning on them, (ii) imposing a constraint on the minimum amount of information encoded in the latent variable, and (iii) by training on additional target-language image descriptions (i.e. synthetic data).Comment: Paper accepted at ACL 2019. Contains 8 pages (11 including references, 13 including appendix), 6 figure

    Imagining Grounded Conceptual Representations from Perceptual Information in Situated Guessing Games

    Get PDF
    In visual guessing games, a Guesser has to identify a target object in a scene by asking questions to an Oracle. An effective strategy for the players is to learn conceptual representations of objects that are both discriminative and expressive enough to ask questions and guess correctly. However, as shown by Suglia et al. (2020), existing models fail to learn truly multi-modal representations, relying instead on gold category labels for objects in the scene both at training and inference time. This provides an unnatural performance advantage when categories at inference time match those at training time, and it causes models to fail in more realistic "zero-shot" scenarios where out-of-domain object categories are involved. To overcome this issue, we introduce a novel "imagination" module based on Regularized Auto-Encoders, that learns context-aware and category-aware latent embeddings without relying on category labels at inference time. Our imagination module outperforms state-of-the-art competitors by 8.26% gameplay accuracy in the CompGuessWhat?! zero-shot scenario (Suglia et al., 2020), and it improves the Oracle and Guesser accuracy by 2.08% and 12.86% in the GuessWhat?! benchmark, when no gold categories are available at inference time. The imagination module also boosts reasoning about object properties and attributes.Comment: Accepted to the International Conference on Computational Linguistics (COLING) 202

    Video Storytelling: Textual Summaries for Events

    Full text link
    Bridging vision and natural language is a longstanding goal in computer vision and multimedia research. While earlier works focus on generating a single-sentence description for visual content, recent works have studied paragraph generation. In this work, we introduce the problem of video storytelling, which aims at generating coherent and succinct stories for long videos. Video storytelling introduces new challenges, mainly due to the diversity of the story and the length and complexity of the video. We propose novel methods to address the challenges. First, we propose a context-aware framework for multimodal embedding learning, where we design a Residual Bidirectional Recurrent Neural Network to leverage contextual information from past and future. Second, we propose a Narrator model to discover the underlying storyline. The Narrator is formulated as a reinforcement learning agent which is trained by directly optimizing the textual metric of the generated story. We evaluate our method on the Video Story dataset, a new dataset that we have collected to enable the study. We compare our method with multiple state-of-the-art baselines, and show that our method achieves better performance, in terms of quantitative measures and user study.Comment: Published in IEEE Transactions on Multimedi
    corecore