41,067 research outputs found
Tensor Monte Carlo: particle methods for the GPU era
Multi-sample, importance-weighted variational autoencoders (IWAE) give
tighter bounds and more accurate uncertainty estimates than variational
autoencoders (VAE) trained with a standard single-sample objective. However,
IWAEs scale poorly: as the latent dimensionality grows, they require
exponentially many samples to retain the benefits of importance weighting.
While sequential Monte-Carlo (SMC) can address this problem, it is
prohibitively slow because the resampling step imposes sequential structure
which cannot be parallelised, and moreover, resampling is non-differentiable
which is problematic when learning approximate posteriors. To address these
issues, we developed tensor Monte-Carlo (TMC) which gives exponentially many
importance samples by separately drawing samples for each of the latent
variables, then averaging over all possible combinations. While the sum
over exponentially many terms might seem to be intractable, in many cases it
can be computed efficiently as a series of tensor inner-products. We show that
TMC is superior to IWAE on a generative model with multiple stochastic layers
trained on the MNIST handwritten digit database, and we show that TMC can be
combined with standard variance reduction techniques
Cross-Section Bead Image Prediction in Laser Keyhole Welding of AISI 1020 Steel Using Deep Learning Architectures
A deep learning model was applied for predicting a cross-sectional bead image from laser welding process parameters. The proposed model consists of two successive generators. The first generator produces a weld bead segmentation map from laser intensity and interaction time, which is subsequently translated into an optical microscopic (OM) image by the second generator. Both generators exhibit an encoder & x2013;decoder structure based on a convolutional neural network (CNN). In the second generator, a conditional generative adversarial network (cGAN) was additionally employed with multiscale discriminators and residual blocks, considering the size of the OM image. For a training dataset, laser welding experiments with AISI 1020 steel were conducted on a large process window using a 2 KW fiber laser, and a total of 39 process conditions were used for the training. High-resolution OM images were successfully generated, and the predicted bead shapes were reasonably accurate (R-Squared: 89.0 & x0025; for penetration depth, 93.6 & x0025; for weld bead area)
Model selection and hypothesis testing for large-scale network models with overlapping groups
The effort to understand network systems in increasing detail has resulted in
a diversity of methods designed to extract their large-scale structure from
data. Unfortunately, many of these methods yield diverging descriptions of the
same network, making both the comparison and understanding of their results a
difficult challenge. A possible solution to this outstanding issue is to shift
the focus away from ad hoc methods and move towards more principled approaches
based on statistical inference of generative models. As a result, we face
instead the more well-defined task of selecting between competing generative
processes, which can be done under a unified probabilistic framework. Here, we
consider the comparison between a variety of generative models including
features such as degree correction, where nodes with arbitrary degrees can
belong to the same group, and community overlap, where nodes are allowed to
belong to more than one group. Because such model variants possess an
increasing number of parameters, they become prone to overfitting. In this
work, we present a method of model selection based on the minimum description
length criterion and posterior odds ratios that is capable of fully accounting
for the increased degrees of freedom of the larger models, and selects the best
one according to the statistical evidence available in the data. In applying
this method to many empirical unweighted networks from different fields, we
observe that community overlap is very often not supported by statistical
evidence and is selected as a better model only for a minority of them. On the
other hand, we find that degree correction tends to be almost universally
favored by the available data, implying that intrinsic node proprieties (as
opposed to group properties) are often an essential ingredient of network
formation.Comment: 20 pages,7 figures, 1 tabl
- …
