9,060 research outputs found

    Learning Generative Models across Incomparable Spaces

    Full text link
    Generative Adversarial Networks have shown remarkable success in learning a distribution that faithfully recovers a reference distribution in its entirety. However, in some cases, we may want to only learn some aspects (e.g., cluster or manifold structure), while modifying others (e.g., style, orientation or dimension). In this work, we propose an approach to learn generative models across such incomparable spaces, and demonstrate how to steer the learned distribution towards target properties. A key component of our model is the Gromov-Wasserstein distance, a notion of discrepancy that compares distributions relationally rather than absolutely. While this framework subsumes current generative models in identically reproducing distributions, its inherent flexibility allows application to tasks in manifold learning, relational learning and cross-domain learning.Comment: International Conference on Machine Learning (ICML

    Task Driven Generative Modeling for Unsupervised Domain Adaptation: Application to X-ray Image Segmentation

    Full text link
    Automatic parsing of anatomical objects in X-ray images is critical to many clinical applications in particular towards image-guided invention and workflow automation. Existing deep network models require a large amount of labeled data. However, obtaining accurate pixel-wise labeling in X-ray images relies heavily on skilled clinicians due to the large overlaps of anatomy and the complex texture patterns. On the other hand, organs in 3D CT scans preserve clearer structures as well as sharper boundaries and thus can be easily delineated. In this paper, we propose a novel model framework for learning automatic X-ray image parsing from labeled CT scans. Specifically, a Dense Image-to-Image network (DI2I) for multi-organ segmentation is first trained on X-ray like Digitally Reconstructed Radiographs (DRRs) rendered from 3D CT volumes. Then we introduce a Task Driven Generative Adversarial Network (TD-GAN) architecture to achieve simultaneous style transfer and parsing for unseen real X-ray images. TD-GAN consists of a modified cycle-GAN substructure for pixel-to-pixel translation between DRRs and X-ray images and an added module leveraging the pre-trained DI2I to enforce segmentation consistency. The TD-GAN framework is general and can be easily adapted to other learning tasks. In the numerical experiments, we validate the proposed model on 815 DRRs and 153 topograms. While the vanilla DI2I without any adaptation fails completely on segmenting the topograms, the proposed model does not require any topogram labels and is able to provide a promising average dice of 85% which achieves the same level accuracy of supervised training (88%)

    Unsupervised Holistic Image Generation from Key Local Patches

    Full text link
    We introduce a new problem of generating an image based on a small number of key local patches without any geometric prior. In this work, key local patches are defined as informative regions of the target object or scene. This is a challenging problem since it requires generating realistic images and predicting locations of parts at the same time. We construct adversarial networks to tackle this problem. A generator network generates a fake image as well as a mask based on the encoder-decoder framework. On the other hand, a discriminator network aims to detect fake images. The network is trained with three losses to consider spatial, appearance, and adversarial information. The spatial loss determines whether the locations of predicted parts are correct. Input patches are restored in the output image without much modification due to the appearance loss. The adversarial loss ensures output images are realistic. The proposed network is trained without supervisory signals since no labels of key parts are required. Experimental results on six datasets demonstrate that the proposed algorithm performs favorably on challenging objects and scenes.Comment: 16 page
    • …
    corecore