3 research outputs found

    Contextual Attention Mechanism, SRGAN Based Inpainting System for Eliminating Interruptions from Images

    Full text link
    The new alternative is to use deep learning to inpaint any image by utilizing image classification and computer vision techniques. In general, image inpainting is a task of recreating or reconstructing any broken image which could be a photograph or oil/acrylic painting. With the advancement in the field of Artificial Intelligence, this topic has become popular among AI enthusiasts. With our approach, we propose an initial end-to-end pipeline for inpainting images using a complete Machine Learning approach instead of a conventional application-based approach. We first use the YOLO model to automatically identify and localize the object we wish to remove from the image. Using the result obtained from the model we can generate a mask for the same. After this, we provide the masked image and original image to the GAN model which uses the Contextual Attention method to fill in the region. It consists of two generator networks and two discriminator networks and is also called a coarse-to-fine network structure. The two generators use fully convolutional networks while the global discriminator gets hold of the entire image as input while the local discriminator gets the grip of the filled region as input. The contextual Attention mechanism is proposed to effectively borrow the neighbor information from distant spatial locations for reconstructing the missing pixels. The third part of our implementation uses SRGAN to resolve the inpainted image back to its original size. Our work is inspired by the paper Free-Form Image Inpainting with Gated Convolution and Generative Image Inpainting with Contextual Attention

    Image Restoration from Parametric Transformations using Generative Models

    Full text link
    When images are statistically described by a generative model we can use this information to develop optimum techniques for various image restoration problems as inpainting, super-resolution, image coloring, generative model inversion, etc. With the help of the generative model it is possible to formulate, in a natural way, these restoration problems as Statistical estimation problems. Our approach, by combining maximum a-posteriori probability with maximum likelihood estimation, is capable of restoring images that are distorted by transformations even when the latter contain unknown parameters. The resulting optimization is completely defined with no parameters requiring tuning. This must be compared with the current state of the art which requires exact knowledge of the transformations and contains regularizer terms with weights that must be properly defined. Finally, we must mention that we extend our method to accommodate mixtures of multiple images where each image is described by its own generative model and we are able of successfully separating each participating image from a single mixture

    Deep Generative Model for Image Inpainting with Local Binary Pattern Learning and Spatial Attention

    Full text link
    Deep learning (DL) has demonstrated its powerful capabilities in the field of image inpainting. The DL-based image inpainting approaches can produce visually plausible results, but often generate various unpleasant artifacts, especially in the boundary and highly textured regions. To tackle this challenge, in this work, we propose a new end-to-end, two-stage (coarse-to-fine) generative model through combining a local binary pattern (LBP) learning network with an actual inpainting network. Specifically, the first LBP learning network using U-Net architecture is designed to accurately predict the structural information of the missing region, which subsequently guides the second image inpainting network for better filling the missing pixels. Furthermore, an improved spatial attention mechanism is integrated in the image inpainting network, by considering the consistency not only between the known region with the generated one, but also within the generated region itself. Extensive experiments on public datasets including CelebA-HQ, Places and Paris StreetView demonstrate that our model generates better inpainting results than the state-of-the-art competing algorithms, both quantitatively and qualitatively. The source code and trained models will be made available at https://github.com/HighwayWu/ImageInpainting
    corecore