407 research outputs found

    1D Conditional Generative Adversarial Network for Spectrum-to-spectrum Translation of Simulated Chemical Reflectance signatures

    Get PDF
    The classification of trace chemical residues through active spectroscopic sensing is challenging due to the lack of physics-based models that can accurately predict spectra. To overcome this challenge, we leveraged the field of domain adaptation to translate data from the simulated to the measured domain for training a classifier. We developed the first 1D conditional generative adversarial network (GAN) to perform spectrum-to-spectrum translation of reflectance signatures. We applied the 1D conditional GAN to a library of simulated spectra and quantified the improvement in classification accuracy on real data using the translated spectra for training the classifier. Using the GAN-translated library, the average classification accuracy increased from 0.622 to 0.723 on real chemical reflectance data, including data from chemicals not included in the GAN training set

    Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB

    Get PDF
    Hyperspectral signal reconstruction aims at recovering the original spectral input that produced a certain trichromatic (RGB) response from a capturing device or observer. Given the heavily underconstrained, non-linear nature of the problem, traditional techniques leverage different statistical properties of the spectral signal in order to build informative priors from real world object reflectances for constructing such RGB to spectral signal mapping. However, most of them treat each sample independently, and thus do not benefit from the contextual information that the spatial dimensions can provide. We pose hyperspectral natural image reconstruction as an image to image mapping learning problem, and apply a conditional generative adversarial framework to help capture spatial semantics. This is the first time Convolutional Neural Networks -and, particularly, Generative Adversarial Networks- are used to solve this task. Quantitative evaluation shows a Root Mean Squared Error (RMSE) drop of 44.7% and a Relative RMSE drop of 47.0% on the ICVL natural hyperspectral image dataset

    GAN-GA: A Generative Model based on Genetic Algorithm for Medical Image Generation

    Full text link
    Medical imaging is an essential tool for diagnosing and treating diseases. However, lacking medical images can lead to inaccurate diagnoses and ineffective treatments. Generative models offer a promising solution for addressing medical image shortage problems due to their ability to generate new data from existing datasets and detect anomalies in this data. Data augmentation with position augmentation methods like scaling, cropping, flipping, padding, rotation, and translation could lead to more overfitting in domains with little data, such as medical image data. This paper proposes the GAN-GA, a generative model optimized by embedding a genetic algorithm. The proposed model enhances image fidelity and diversity while preserving distinctive features. The proposed medical image synthesis approach improves the quality and fidelity of medical images, an essential aspect of image interpretation. To evaluate synthesized images: Frechet Inception Distance (FID) is used. The proposed GAN-GA model is tested by generating Acute lymphoblastic leukemia (ALL) medical images, an image dataset, and is the first time to be used in generative models. Our results were compared to those of InfoGAN as a baseline model. The experimental results show that the proposed optimized GAN-GA enhances FID scores by about 6.8\%, especially in earlier training epochs. The source code and dataset will be available at: https://github.com/Mustafa-AbdulRazek/InfoGAN-GA.Comment: 10 pages, 2 figures. Abstract published in Frontiers in Medical Technology, presented at the 27th Conference on Medical Image Understanding and Analysis 2023. DOI: 10.3389/978-2-8325-1231-9. URL: https://doi.org/10.3389/978-2-8325-1231-
    • …
    corecore