4 research outputs found

    On Hyperbolic Attractors in Complex Shimizu -- Morioka Model

    Full text link
    We present a modified complex-valued Shimizu -- Morioka system with uniformly hyperbolic attractor. The numerically observed attractor in Poincar\'{e} cross-section is topologically close to Smale -- Williams solenoid. The arguments of the complex variables undergo Bernoulli-type map, essential for Smale -- Williams attractor, due to the geometrical arrangement of the phase space and an additional perturbation term. The transformation of the phase space near the saddle equilibrium "scatters" trajectories to new angles, then trajectories run from the saddle and return to it for the next "scatter". We provide the results of numerical simulations of the model and demonstrate typical features of the appearing hyperbolic attractor of Smale -- Williams type. Importantly, we show in numerical tests the transversality of tangent subspaces -- a pivotal property of uniformly hyperbolic attractor.Comment: 9 pages, 8 figure

    Homoclinic puzzles and chaos in a nonlinear laser model

    Get PDF
    We present a case study elaborating on the multiplicity and self-similarity of homoclinic and heteroclinic bifurcation structures in the 2D and 3D parameter spaces of a nonlinear laser model with a Lorenz-like chaotic attractor. In a symbiotic approach combining the traditional parameter continuation methods using MatCont and a newly developed technique called the Deterministic Chaos Prospector (DCP) utilizing symbolic dynamics on fast parallel computing hardware with graphics processing units (GPUs), we exhibit how specific codimension-two bifurcations originate and pattern regions of chaotic and simple dynamics in this classical model. We show detailed computational reconstructions of key bifurcation structures such as Bykov T-point spirals and inclination flips in 2D parameter space, as well as the spatial organization and 3D embedding of bifurcation surfaces, parametric saddles, and isolated closed curves (isolas).Comment: 28 pages, 23 figure

    Complex Dynamics in Dedicated / Multifunctional Neural Networks and Chaotic Nonlinear Systems

    Get PDF
    We study complex behaviors arising in neuroscience and other nonlinear systems by combining dynamical systems analysis with modern computational approaches including GPU parallelization and unsupervised machine learning. To gain insights into the behaviors of brain networks and complex central pattern generators (CPGs), it is important to understand the dynamical principles regulating individual neurons as well as the basic structural and functional building blocks of neural networks. In the first section, we discuss how symbolic methods can help us analyze neural dynamics such as bursting, tonic spiking and chaotic mixed-mode oscillations in various models of individual neurons, the bifurcations that underlie transitions between activity types, as well as emergent network phenomena through synergistic interactions seen in realistic neural circuits, such as network bursting from non-intrinsic bursters. The second section is focused on the origin and coexistence of multistable rhythms in oscillatory neural networks of inhibitory coupled cells. We discuss how network connectivity and intrinsic properties of the cells affect the dynamics, and how even simple circuits can exhibit a variety of mono/multi-stable rhythms including pacemakers, half-center oscillators, multiple traveling-waves, fully synchronous states, as well as various chimeras. Our analyses can help generate verifiable hypotheses for neurophysiological experiments on central pattern generators. In the last section, we demonstrate the inter-disciplinary nature of this research through the applications of these techniques to identify the universal principles governing both simple and complex dynamics, and chaotic structure in diverse nonlinear systems. Using a classical example from nonlinear laser optics, we elaborate on the multiplicity and self-similarity of key organizing structures in 2D parameter space such as homoclinic and heteroclinic bifurcation curves, Bykov T-point spirals, and inclination flips. This is followed by detailed computational reconstructions of the spatial organization and 3D embedding of bifurcation surfaces, parametric saddles, and isolated closed curves (isolas). The generality of our modeling approaches could lead to novel methodologies and nonlinear science applications in biological, medical and engineering systems
    corecore