5,431 research outputs found

    Model Based Development of Quality-Aware Software Services

    Get PDF
    Modelling languages and development frameworks give support for functional and structural description of software architectures. But quality-aware applications require languages which allow expressing QoS as a first-class concept during architecture design and service composition, and to extend existing tools and infrastructures adding support for modelling, evaluating, managing and monitoring QoS aspects. In addition to its functional behaviour and internal structure, the developer of each service must consider the fulfilment of its quality requirements. If the service is flexible, the output quality depends both on input quality and available resources (e.g., amounts of CPU execution time and memory). From the software engineering point of view, modelling of quality-aware requirements and architectures require modelling support for the description of quality concepts, support for the analysis of quality properties (e.g. model checking and consistencies of quality constraints, assembly of quality), tool support for the transition from quality requirements to quality-aware architectures, and from quality-aware architecture to service run-time infrastructures. Quality management in run-time service infrastructures must give support for handling quality concepts dynamically. QoS-aware modeling frameworks and QoS-aware runtime management infrastructures require a common evolution to get their integration

    A study of concept options for the evolution of Space Station Freedom

    Get PDF
    Two conceptual evolution configurations for Space Station Freedom, a research and development configuration, and a transportation node configuration are described and analyzed. Results of pertinent analyses of mass properties, attitude control, microgravity, orbit lifetime, and reboost requirements are provided along with a description of these analyses. Also provided are brief descriptions of the elements and systems that comprise these conceptual configurations

    Flight crew aiding for recovery from subsystem failures

    Get PDF
    Some of the conceptual issues associated with pilot aiding systems are discussed and an implementation of one component of such an aiding system is described. It is essential that the format and content of the information the aiding system presents to the crew be compatible with the crew's mental models of the task. It is proposed that in order to cooperate effectively, both the aiding system and the flight crew should have consistent information processing models, especially at the point of interface. A general information processing strategy, developed by Rasmussen, was selected to serve as the bridge between the human and aiding system's information processes. The development and implementation of a model-based situation assessment and response generation system for commercial transport aircraft are described. The current implementation is a prototype which concentrates on engine and control surface failure situations and consequent flight emergencies. The aiding system, termed Recovery Recommendation System (RECORS), uses a causal model of the relevant subset of the flight domain to simulate the effects of these failures and to generate appropriate responses, given the current aircraft state and the constraints of the current flight phase. Since detailed information about the aircraft state may not always be available, the model represents the domain at varying levels of abstraction and uses the less detailed abstraction levels to make inferences when exact information is not available. The structure of this model is described in detail

    A report on SHARP (Spacecraft Health Automated Reasoning Prototype) and the Voyager Neptune encounter

    Get PDF
    The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations

    Natural Language Dialogue Service for Appointment Scheduling Agents

    Get PDF
    Appointment scheduling is a problem faced daily by many individuals and organizations. Cooperating agent systems have been developed to partially automate this task. In order to extend the circle of participants as far as possible we advocate the use of natural language transmitted by e-mail. We describe COSMA, a fully implemented German language server for existing appointment scheduling agent systems. COSMA can cope with multiple dialogues in parallel, and accounts for differences in dialogue behaviour between human and machine agents. NL coverage of the sublanguage is achieved through both corpus-based grammar development and the use of message extraction techniques.Comment: 8 or 9 pages, LaTeX; uses aclap.sty, epsf.te

    Report on the Second Workshop on Distributed AI

    Get PDF
    On June 24, 1981 twenty-five participants from organizations around the country gathered in MIT's Endicott House for the Second Annual Workshop on Distributed AI. The three-day workshop was designed as an informal meeting, centered mainly around brief research reports presented by each group, along with an invited talk. In keeping with the spirit of the meeting, this report was prepared as a distributed document, with each speaker contributing a summary of his remarks.MIT Artificial Intelligence Laborator

    Specifications and programs for computer software validation

    Get PDF
    Three software products developed during the study are reported and include: (1) FORTRAN Automatic Code Evaluation System, (2) the Specification Language System, and (3) the Array Index Validation System

    Report on the Workshop on Distributed AI

    Get PDF
    On June 9-11, 22 people gathered at Endicott House for the first workshop on the newly emerging topic of Distributed AI. They came with a wide range of views on the topic, and indeed a wide range of views of what precisely the topic was. In keeping with the spirit of the workshop, this report describing it was prepared in a distributed fashion. Each of the speakers contributed a summary of his comments. Sessions during the workshop included both descriptions of work done or in progress, and group discussions focused on a range of topics. The report reflects the organization, with nine short articles describing research efforts, and four summarizing the informal comments used as the foci for the group discussions.MIT Artificial Intelligence Laborator

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research
    • …
    corecore