28,130 research outputs found

    A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition

    Get PDF
    This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.Comment: The paper is accepted in Neural Computatio

    Applying Deep Learning to Fast Radio Burst Classification

    Get PDF
    Upcoming Fast Radio Burst (FRB) surveys will search ∌\sim10\,3^3 beams on sky with very high duty cycle, generating large numbers of single-pulse candidates. The abundance of false positives presents an intractable problem if candidates are to be inspected by eye, making it a good application for artificial intelligence (AI). We apply deep learning to single pulse classification and develop a hierarchical framework for ranking events by their probability of being true astrophysical transients. We construct a tree-like deep neural network (DNN) that takes multiple or individual data products as input (e.g. dynamic spectra and multi-beam detection information) and trains on them simultaneously. We have built training and test sets using false-positive triggers from real telescopes, along with simulated FRBs, and single pulses from pulsars. Training of the DNN was independently done for two radio telescopes: the CHIME Pathfinder, and Apertif on Westerbork. High accuracy and recall can be achieved with a labelled training set of a few thousand events. Even with high triggering rates, classification can be done very quickly on Graphical Processing Units (GPUs). That speed is essential for selective voltage dumps or issuing real-time VOEvents. Next, we investigate whether dedispersion back-ends could be completely replaced by a real-time DNN classifier. It is shown that a single forward propagation through a moderate convolutional network could be faster than brute-force dedispersion; but the low signal-to-noise per pixel makes such a classifier sub-optimal for this problem. Real-time automated classification may prove useful for bright, unexpected signals, both now and in the era of radio astronomy when data volumes and the searchable parameter spaces further outgrow our ability to manually inspect the data, such as for SKA and ngVLA

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text

    RacoonWW1.3: A Monte Carlo program for four-fermion production at e^+ e^- colliders

    Get PDF
    We present the Monte Carlo generator RacoonWW that computes cross sections to all processes e^+ e^- -> 4f and e^+ e^- -> 4f + gamma and calculates the complete O(alpha) electroweak radiative corrections to e^+ e^- -> W W -> 4f in the electroweak Standard Model in double-pole approximation. The calculation of the tree-level processes e^+ e^- -> 4f and e^+ e^- -> 4f + gamma is based on the full matrix elements for massless (polarized) fermions. When calculating radiative corrections to e^+ e^- -> W W -> 4f the complete virtual doubly-resonant electroweak corrections are included, i.e. the factorizable and non-factorizable virtual corrections in double-pole approximation, and the real corrections are based on the full matrix elements for e^+ e^- -> 4f + gamma. The matching of soft and collinear singularities between virtual and real corrections is done alternatively in two different ways, namely by using a subtraction method or by applying phase-space slicing. Higher-order initial-state photon radiation and naive QCD corrections are taken into account. RacoonWW also provides anomalous triple gauge-boson couplings for all processes e^+ e^- -> 4f and anomalous quartic gauge-boson couplings for all processes e^+ e^- -> 4f + gamma.Comment: 62 pages, LaTeX, elsart styl
    • 

    corecore