4 research outputs found

    Current-mode piecewise-linear function generators

    Get PDF
    We present a systematic design technique for current-mode piecewise-linear (PWL) function generators. It uses two building blocks: a high-resolution current rectifier, and a programmable current amplifier. We show how to arrange these blocks to obtain basic non-linearities from which generic characteristics are built through aggregations. Measurements from a 1.0 /spl mu/m CMOS prototype chip show 10 pA resolution in the rectification operation and 0.6% non-linearity errors in the programmable scaling operation for 2 /spl mu/A input current range

    A basic building block approach to CMOS design of analog neuro/fuzzy systems

    Get PDF
    Outlines a systematic approach to design fuzzy inference systems using analog integrated circuits in standard CMOS VLSI technologies. The proposed circuit building blocks are arranged in a layered neuro/fuzzy architecture composed of 5 layers: fuzzification, T-norm, normalization, consequent, and output. Inference is performed by using Takagi and Sugeno's (1989) IF-THEN rules, particularly where the rule's output contains only a constant term-a singleton. A simple CMOS circuit with tunable bell-like transfer characteristics is used for the fuzzification. The inputs to this circuit are voltages while the outputs are currents. Circuit blocks proposed for the remaining layers operate in the current-mode domain. Innovative circuits are proposed for the T-norm and normalization layers. The other two layers use current mirrors and KCL. All the proposed circuits emphasize simplicity at the circuit level-a prerequisite to increasing system level complexity and operation speed. A 3-input, 4-rule controller has been designed for demonstration purposes in a 1.6 /spl mu/m CMOS single-poly, double-metal technology. We include measurements from prototypes of the membership function block and detailed HSPICE simulations of the whole controller. These results operation speed in the range of 5 MFLIPS (million fuzzy logic inferences per second) with systematic errors below 1%

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Generation of Chaotic Signals Using Current-Mode Techniques

    No full text
    corecore