118,825 research outputs found

    Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music Generation Task

    Full text link
    Benefiting from large-scale datasets and pre-trained models, the field of generative models has recently gained significant momentum. However, most datasets for symbolic music are very small, which potentially limits the performance of data-driven multimodal models. An intuitive solution to this problem is to leverage pre-trained models from other modalities (e.g., natural language) to improve the performance of symbolic music-related multimodal tasks. In this paper, we carry out the first study of generating complete and semantically consistent symbolic music scores from text descriptions, and explore the efficacy of using publicly available checkpoints (i.e., BERT, GPT-2, and BART) for natural language processing in the task of text-to-music generation. Our experimental results show that the improvement from using pre-trained checkpoints is statistically significant in terms of BLEU score and edit distance similarity. We analyse the capabilities and limitations of our model to better understand the potential of language-music models.Comment: 5 pages, 2 figures, 2 table

    Music Understanding LLaMA: Advancing Text-to-Music Generation with Question Answering and Captioning

    Full text link
    Text-to-music generation (T2M-Gen) faces a major obstacle due to the scarcity of large-scale publicly available music datasets with natural language captions. To address this, we propose the Music Understanding LLaMA (MU-LLaMA), capable of answering music-related questions and generating captions for music files. Our model utilizes audio representations from a pretrained MERT model to extract music features. However, obtaining a suitable dataset for training the MU-LLaMA model remains challenging, as existing publicly accessible audio question answering datasets lack the necessary depth for open-ended music question answering. To fill this gap, we present a methodology for generating question-answer pairs from existing audio captioning datasets and introduce the MusicQA Dataset designed for answering open-ended music-related questions. The experiments demonstrate that the proposed MU-LLaMA model, trained on our designed MusicQA dataset, achieves outstanding performance in both music question answering and music caption generation across various metrics, outperforming current state-of-the-art (SOTA) models in both fields and offering a promising advancement in the T2M-Gen research field

    MusCaps: generating captions for music audio

    Get PDF
    Content-based music information retrieval has seen rapid progress with the adoption of deep learning. Current approaches to high-level music description typically make use of classification models, such as in auto tagging or genre and mood classification. In this work, we propose to address music description via audio captioning, defined as the task of generating a natural language description of music audio content in a human-like manner. To this end, we present the first music audio captioning model, MusCaps, consisting of an encoder-decoder with temporal attention. Our method combines convolutional and recurrent neural network architectures to jointly process audio-text inputs through a multimodal encoder and leverages pre-training on audio data to obtain representations that effectively capture and summarise musical features in the input. Evaluation of the generated captions through automatic metrics shows that our method outperforms a baseline designed for non-music audio captioning. Through an ablation study, we unveil that this performance boost can be mainly attributed to pre-training of the audio encoder, while other design choices – modality fusion, decoding strategy and the use of attention -- contribute only marginally. Our model represents a shift away from classification-based music description and combines tasks requiring both auditory and linguistic understanding to bridge the semantic gap in music information retrieval

    Creation of a New Domain and Evaluation of Comparison Generation in a Natural Language Generation System

    Get PDF
    We describe the creation of a new domain for the Methodius Natural Language Generation System, and an evaluation of Methodius ’ parameterized comparison generation algorithm. The new domain was based around music and performers, and texts about the domain were generated using Methodius. Our evaluation showed that test subjects learned more from texts that contained comparisons than from those that did not. We also established that the comparison generation algorithm could generalize to the music domain.
    corecore