1,603 research outputs found

    Learning From Geometry In Learning For Tactical And Strategic Decision Domains

    Get PDF
    Artificial neural networks (ANNs) are an abstraction of the low-level architecture of biological brains that are often applied in general problem solving and function approximation. Neuroevolution (NE), i.e. the evolution of ANNs, has proven effective at solving problems in a variety of domains. Information from the domain is input to the ANN, which outputs its desired actions. This dissertation presents a new NE algorithm called Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT), based on a novel indirect encoding of ANNs. The key insight in HyperNEAT is to make the algorithm aware of the geometry in which the ANNs are embedded and thereby exploit such domain geometry to evolve ANNs more effectively. The dissertation focuses on applying HyperNEAT to tactical and strategic decision domains. These domains involve simultaneously considering short-term tactics while also balancing long-term strategies. Board games such as checkers and Go are canonical examples of such domains; however, they also include real-time strategy games and military scenarios. The dissertation details three proposed extensions to HyperNEAT designed to work in tactical and strategic decision domains. The first is an action selector ANN architecture that allows the ANN to indicate its judgements on every possible action all at once. The second technique is called substrate extrapolation. It allows learning basic concepts at a low resolution, and then increasing the resolution to learn more advanced concepts. The iii final extension is geometric game-tree pruning, whereby HyperNEAT can endow the ANN the ability to focus on specific areas of a domain (such as a checkers board) that deserve more inspection. The culminating contribution is to demonstrate the ability of HyperNEAT with these extensions to play Go, a most challenging game for artificial intelligence, by combining HyperNEAT with UC

    Neuroevolution on the Edge of Chaos

    Full text link
    Echo state networks represent a special type of recurrent neural networks. Recent papers stated that the echo state networks maximize their computational performance on the transition between order and chaos, the so-called edge of chaos. This work confirms this statement in a comprehensive set of experiments. Furthermore, the echo state networks are compared to networks evolved via neuroevolution. The evolved networks outperform the echo state networks, however, the evolution consumes significant computational resources. It is demonstrated that echo state networks with local connections combine the best of both worlds, the simplicity of random echo state networks and the performance of evolved networks. Finally, it is shown that evolution tends to stay close to the ordered side of the edge of chaos.Comment: To appear in Proceedings of the Genetic and Evolutionary Computation Conference 2017 (GECCO '17

    Multiagent Learning Through Indirect Encoding

    Get PDF
    Designing a system of multiple, heterogeneous agents that cooperate to achieve a common goal is a difficult task, but it is also a common real-world problem. Multiagent learning addresses this problem by training the team to cooperate through a learning algorithm. However, most traditional approaches treat multiagent learning as a combination of multiple single-agent learning problems. This perspective leads to many inefficiencies in learning such as the problem of reinvention, whereby fundamental skills and policies that all agents should possess must be rediscovered independently for each team member. For example, in soccer, all the players know how to pass and kick the ball, but a traditional algorithm has no way to share such vital information because it has no way to relate the policies of agents to each other. In this dissertation a new approach to multiagent learning that seeks to address these issues is presented. This approach, called multiagent HyperNEAT, represents teams as a pattern of policies rather than individual agents. The main idea is that an agent’s location within a canonical team layout (such as a soccer team at the start of a game) tends to dictate its role within that team, called the policy geometry. For example, as soccer positions move from goal to center they become more offensive and less defensive, a concept that is compactly represented as a pattern. iii The first major contribution of this dissertation is a new method for evolving neural network controllers called HyperNEAT, which forms the foundation of the second contribution and primary focus of this work, multiagent HyperNEAT. Multiagent learning in this dissertation is investigated in predator-prey, room-clearing, and patrol domains, providing a real-world context for the approach. Interestingly, because the teams in multiagent HyperNEAT are represented as patterns they can scale up to an infinite number of multiagent policies that can be sampled from the policy geometry as needed. Thus the third contribution is a method for teams trained with multiagent HyperNEAT to dynamically scale their size without further learning. Fourth, the capabilities to both learn and scale in multiagent HyperNEAT are compared to the traditional multiagent SARSA(λ) approach in a comprehensive study. The fifth contribution is a method for efficiently learning and encoding multiple policies for each agent on a team to facilitate learning in multi-task domains. Finally, because there is significant interest in practical applications of multiagent learning, multiagent HyperNEAT is tested in a real-world military patrolling application with actual Khepera III robots. The ultimate goal is to provide a new perspective on multiagent learning and to demonstrate the practical benefits of training heterogeneous, scalable multiagent teams through generative encoding

    Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis

    Full text link
    We introduce a data-driven approach to complete partial 3D shapes through a combination of volumetric deep neural networks and 3D shape synthesis. From a partially-scanned input shape, our method first infers a low-resolution -- but complete -- output. To this end, we introduce a 3D-Encoder-Predictor Network (3D-EPN) which is composed of 3D convolutional layers. The network is trained to predict and fill in missing data, and operates on an implicit surface representation that encodes both known and unknown space. This allows us to predict global structure in unknown areas at high accuracy. We then correlate these intermediary results with 3D geometry from a shape database at test time. In a final pass, we propose a patch-based 3D shape synthesis method that imposes the 3D geometry from these retrieved shapes as constraints on the coarsely-completed mesh. This synthesis process enables us to reconstruct fine-scale detail and generate high-resolution output while respecting the global mesh structure obtained by the 3D-EPN. Although our 3D-EPN outperforms state-of-the-art completion method, the main contribution in our work lies in the combination of a data-driven shape predictor and analytic 3D shape synthesis. In our results, we show extensive evaluations on a newly-introduced shape completion benchmark for both real-world and synthetic data
    • …
    corecore