4,852 research outputs found

    Many Hard Examples in Exact Phase Transitions with Application to Generating Hard Satisfiable Instances

    Full text link
    This paper first analyzes the resolution complexity of two random CSP models (i.e. Model RB/RD) for which we can establish the existence of phase transitions and identify the threshold points exactly. By encoding CSPs into CNF formulas, it is proved that almost all instances of Model RB/RD have no tree-like resolution proofs of less than exponential size. Thus, we not only introduce new families of CNF formulas hard for resolution, which is a central task of Proof-Complexity theory, but also propose models with both many hard instances and exact phase transitions. Then, the implications of such models are addressed. It is shown both theoretically and experimentally that an application of Model RB/RD might be in the generation of hard satisfiable instances, which is not only of practical importance but also related to some open problems in cryptography such as generating one-way functions. Subsequently, a further theoretical support for the generation method is shown by establishing exponential lower bounds on the complexity of solving random satisfiable and forced satisfiable instances of RB/RD near the threshold. Finally, conclusions are presented, as well as a detailed comparison of Model RB/RD with the Hamiltonian cycle problem and random 3-SAT, which, respectively, exhibit three different kinds of phase transition behavior in NP-complete problems.Comment: 19 pages, corrected mistakes in Theorems 5 and

    A Simple Model to Generate Hard Satisfiable Instances

    Full text link
    In this paper, we try to further demonstrate that the models of random CSP instances proposed by [Xu and Li, 2000; 2003] are of theoretical and practical interest. Indeed, these models, called RB and RD, present several nice features. First, it is quite easy to generate random instances of any arity since no particular structure has to be integrated, or property enforced, in such instances. Then, the existence of an asymptotic phase transition can be guaranteed while applying a limited restriction on domain size and on constraint tightness. In that case, a threshold point can be precisely located and all instances have the guarantee to be hard at the threshold, i.e., to have an exponential tree-resolution complexity. Next, a formal analysis shows that it is possible to generate forced satisfiable instances whose hardness is similar to unforced satisfiable ones. This analysis is supported by some representative results taken from an intensive experimentation that we have carried out, using complete and incomplete search methods.Comment: Proc. of 19th IJCAI, pp.337-342, Edinburgh, Scotland, 2005. For more information, please click http://www.nlsde.buaa.edu.cn/~kexu/papers/ijcai05-abstract.ht

    Hidden Structure in Unsatisfiable Random 3-SAT: an Empirical Study

    No full text
    Recent advances in propositional satisfiability (SAT) include studying the hidden structure of unsatisfiable formulas, i.e. explaining why a given formula is unsatisfiable. Although theoretical work on the topic has been developed in the past, only recently two empirical successful approaches have been proposed: extracting unsatisfiable cores and identifying strong backdoors. An unsatisfiable core is a subset of clauses that defines a sub-formula that is also unsatisfiable, whereas a strong backdoor defines a subset of variables which assigned with all values allow concluding that the formula is unsatisfiable. The contribution of this paper is two-fold. First, we study the relation between the search complexity of unsatisfiable random 3-SAT formulas and the sizes of unsatisfiable cores and strong backdoors. For this purpose, we use an existing algorithm which uses an approximated approach for calculating these values. Second, we introduce a new algorithm that optimally reduces the size of unsatisfiable cores and strong backdoors, thus giving more accurate results. Experimental results indicate that the search complexity of unsatisfiable random 3-SAT formulas is related with the size of unsatisfiable cores and strong backdoors. 1

    Lower Bounds on Query Complexity for Testing Bounded-Degree CSPs

    Full text link
    In this paper, we consider lower bounds on the query complexity for testing CSPs in the bounded-degree model. First, for any ``symmetric'' predicate P:0,1k→0,1P:{0,1}^{k} \to {0,1} except \equ where k≥3k\geq 3, we show that every (randomized) algorithm that distinguishes satisfiable instances of CSP(P) from instances (∣P−1(0)∣/2k−ϵ)(|P^{-1}(0)|/2^k-\epsilon)-far from satisfiability requires Ω(n1/2+δ)\Omega(n^{1/2+\delta}) queries where nn is the number of variables and δ>0\delta>0 is a constant that depends on PP and ϵ\epsilon. This breaks a natural lower bound Ω(n1/2)\Omega(n^{1/2}), which is obtained by the birthday paradox. We also show that every one-sided error tester requires Ω(n)\Omega(n) queries for such PP. These results are hereditary in the sense that the same results hold for any predicate QQ such that P−1(1)⊆Q−1(1)P^{-1}(1) \subseteq Q^{-1}(1). For EQU, we give a one-sided error tester whose query complexity is O~(n1/2)\tilde{O}(n^{1/2}). Also, for 2-XOR (or, equivalently E2LIN2), we show an Ω(n1/2+δ)\Omega(n^{1/2+\delta}) lower bound for distinguishing instances between ϵ\epsilon-close to and (1/2−ϵ)(1/2-\epsilon)-far from satisfiability. Next, for the general k-CSP over the binary domain, we show that every algorithm that distinguishes satisfiable instances from instances (1−2k/2k−ϵ)(1-2k/2^k-\epsilon)-far from satisfiability requires Ω(n)\Omega(n) queries. The matching NP-hardness is not known, even assuming the Unique Games Conjecture or the dd-to-11 Conjecture. As a corollary, for Maximum Independent Set on graphs with nn vertices and a degree bound dd, we show that every approximation algorithm within a factor d/\poly\log d and an additive error of ϵn\epsilon n requires Ω(n)\Omega(n) queries. Previously, only super-constant lower bounds were known

    Simplest random K-satisfiability problem

    Full text link
    We study a simple and exactly solvable model for the generation of random satisfiability problems. These consist of γN\gamma N random boolean constraints which are to be satisfied simultaneously by NN logical variables. In statistical-mechanics language, the considered model can be seen as a diluted p-spin model at zero temperature. While such problems become extraordinarily hard to solve by local search methods in a large region of the parameter space, still at least one solution may be superimposed by construction. The statistical properties of the model can be studied exactly by the replica method and each single instance can be analyzed in polynomial time by a simple global solution method. The geometrical/topological structures responsible for dynamic and static phase transitions as well as for the onset of computational complexity in local search method are thoroughly analyzed. Numerical analysis on very large samples allows for a precise characterization of the critical scaling behaviour.Comment: 14 pages, 5 figures, to appear in Phys. Rev. E (Feb 2001). v2: minor errors and references correcte

    Phase Transition in Matched Formulas and a Heuristic for Biclique Satisfiability

    Full text link
    A matched formula is a CNF formula whose incidence graph admits a matching which matches a distinct variable to every clause. We study phase transition in a context of matched formulas and their generalization of biclique satisfiable formulas. We have performed experiments to find a phase transition of property "being matched" with respect to the ratio m/nm/n where mm is the number of clauses and nn is the number of variables of the input formula φ\varphi. We compare the results of experiments to a theoretical lower bound which was shown by Franco and Gelder (2003). Any matched formula is satisfiable, moreover, it remains satisfiable even if we change polarities of any literal occurrences. Szeider (2005) generalized matched formulas into two classes having the same property -- var-satisfiable and biclique satisfiable formulas. A formula is biclique satisfiable if its incidence graph admits covering by pairwise disjoint bounded bicliques. Recognizing if a formula is biclique satisfiable is NP-complete. In this paper we describe a heuristic algorithm for recognizing whether a formula is biclique satisfiable and we evaluate it by experiments on random formulas. We also describe an encoding of the problem of checking whether a formula is biclique satisfiable into SAT and we use it to evaluate the performance of our heuristicComment: Conference version submitted to SOFSEM 2018 (https://beda.dcs.fmph.uniba.sk/sofsem2019/) 18 pages(17 without refernces), 3 figures, 8 tables, an algorithm pseudocod
    • …
    corecore