20,655 research outputs found

    Faster generation of random spanning trees

    Get PDF
    In this paper, we set forth a new algorithm for generating approximately uniformly random spanning trees in undirected graphs. We show how to sample from a distribution that is within a multiplicative (1+δ)(1+\delta) of uniform in expected time \TO(m\sqrt{n}\log 1/\delta). This improves the sparse graph case of the best previously known worst-case bound of O(min{mn,n2.376})O(\min \{mn, n^{2.376}\}), which has stood for twenty years. To achieve this goal, we exploit the connection between random walks on graphs and electrical networks, and we use this to introduce a new approach to the problem that integrates discrete random walk-based techniques with continuous linear algebraic methods. We believe that our use of electrical networks and sparse linear system solvers in conjunction with random walks and combinatorial partitioning techniques is a useful paradigm that will find further applications in algorithmic graph theory

    Sampling Random Spanning Trees Faster than Matrix Multiplication

    Full text link
    We present an algorithm that, with high probability, generates a random spanning tree from an edge-weighted undirected graph in O~(n4/3m1/2+n2)\tilde{O}(n^{4/3}m^{1/2}+n^{2}) time (The O~()\tilde{O}(\cdot) notation hides polylog(n)\operatorname{polylog}(n) factors). The tree is sampled from a distribution where the probability of each tree is proportional to the product of its edge weights. This improves upon the previous best algorithm due to Colbourn et al. that runs in matrix multiplication time, O(nω)O(n^\omega). For the special case of unweighted graphs, this improves upon the best previously known running time of O~(min{nω,mn,m4/3})\tilde{O}(\min\{n^{\omega},m\sqrt{n},m^{4/3}\}) for mn5/3m \gg n^{5/3} (Colbourn et al. '96, Kelner-Madry '09, Madry et al. '15). The effective resistance metric is essential to our algorithm, as in the work of Madry et al., but we eschew determinant-based and random walk-based techniques used by previous algorithms. Instead, our algorithm is based on Gaussian elimination, and the fact that effective resistance is preserved in the graph resulting from eliminating a subset of vertices (called a Schur complement). As part of our algorithm, we show how to compute ϵ\epsilon-approximate effective resistances for a set SS of vertex pairs via approximate Schur complements in O~(m+(n+S)ϵ2)\tilde{O}(m+(n + |S|)\epsilon^{-2}) time, without using the Johnson-Lindenstrauss lemma which requires O~(min{(m+S)ϵ2,m+nϵ4+Sϵ2})\tilde{O}( \min\{(m + |S|)\epsilon^{-2}, m+n\epsilon^{-4} +|S|\epsilon^{-2}\}) time. We combine this approximation procedure with an error correction procedure for handing edges where our estimate isn't sufficiently accurate

    Fast Generation of Random Spanning Trees and the Effective Resistance Metric

    Full text link
    We present a new algorithm for generating a uniformly random spanning tree in an undirected graph. Our algorithm samples such a tree in expected O~(m4/3)\tilde{O}(m^{4/3}) time. This improves over the best previously known bound of min(O~(mn),O(nω))\min(\tilde{O}(m\sqrt{n}),O(n^{\omega})) -- that follows from the work of Kelner and M\k{a}dry [FOCS'09] and of Colbourn et al. [J. Algorithms'96] -- whenever the input graph is sufficiently sparse. At a high level, our result stems from carefully exploiting the interplay of random spanning trees, random walks, and the notion of effective resistance, as well as from devising a way to algorithmically relate these concepts to the combinatorial structure of the graph. This involves, in particular, establishing a new connection between the effective resistance metric and the cut structure of the underlying graph

    Markov Chain Intersections and the Loop-Erased Walk

    Get PDF
    Let X and Y be independent transient Markov chains on the same state space that have the same transition probabilities. Let L denote the ``loop-erased path'' obtained from the path of X by erasing cycles when they are created. We prove that if the paths of X and Y have infinitely many intersections a.s., then L and Y also have infinitely many intersections a.s.Comment: To appear in Ann. Inst. H. Poincar\'e Probab. Statis

    Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions

    Full text link
    We evaluate the virial coefficients B_k for k<=10 for hard spheres in dimensions D=2,...,8. Virial coefficients with k even are found to be negative when D>=5. This provides strong evidence that the leading singularity for the virial series lies away from the positive real axis when D>=5. Further analysis provides evidence that negative virial coefficients will be seen for some k>10 for D=4, and there is a distinct possibility that negative virial coefficients will also eventually occur for D=3.Comment: 33 pages, 12 figure
    corecore