4 research outputs found

    Incremental complexity of a bi-objective hypergraph transversal problem

    Get PDF
    The hypergraph transversal problem has been intensively studied, from both a theoretical and a practical point of view. In particular , its incremental complexity is known to be quasi-polynomial in general and polynomial for bounded hypergraphs. Recent applications in computational biology however require to solve a generalization of this problem, that we call bi-objective transversal problem. The instance is in this case composed of a pair of hypergraphs (A, B), and the aim is to find minimal sets which hit all the hyperedges of A while intersecting a minimal set of hyperedges of B. In this paper, we formalize this problem, link it to a problem on monotone boolean ∧\land -- √\lor formulae of depth 3 and study its incremental complexity

    Generating Partial and Multiple Transversals of a Hypergraph

    Get PDF
    . We consider two natural generalizations of the notion of transversal to a finite hypergraph, arising in data-mining and machine learning, the so called multiple and partial transversals. We show that the hypergraphs of all multiple and all partial transversals are dual- bounded in the sense that in both cases, the size of the dual hypergraph is bounded by a polynomial in the cardinality and the length of description of the input hypergraph. Our bounds are based on new inequalities of extremal set theory and threshold logic, which may be of independent interest. We also show that the problems of generating all multiple and all partial transversals of an arbitrary hypergraph are polynomial-time reducible to the well-known dualization problem of hypergraphs. As a corollary, we obtain incremental quasi-polynomial-time algorithms for both of the above problems, as well as for the generation of all the minimal Boolean solutions for an arbitrary monotone system of linear inequalities. Thus,..
    corecore