3 research outputs found

    Generating Nontrivial Melodies for Music as a Service

    Full text link
    We present a hybrid neural network and rule-based system that generates pop music. Music produced by pure rule-based systems often sounds mechanical. Music produced by machine learning sounds better, but still lacks hierarchical temporal structure. We restore temporal hierarchy by augmenting machine learning with a temporal production grammar, which generates the music's overall structure and chord progressions. A compatible melody is then generated by a conditional variational recurrent autoencoder. The autoencoder is trained with eight-measure segments from a corpus of 10,000 MIDI files, each of which has had its melody track and chord progressions identified heuristically. The autoencoder maps melody into a multi-dimensional feature space, conditioned by the underlying chord progression. A melody is then generated by feeding a random sample from that space to the autoencoder's decoder, along with the chord progression generated by the grammar. The autoencoder can make musically plausible variations on an existing melody, suitable for recurring motifs. It can also reharmonize a melody to a new chord progression, keeping the rhythm and contour. The generated music compares favorably with that generated by other academic and commercial software designed for the music-as-a-service industry.Comment: ISMIR 2017 Conferenc

    Generating Albums with SampleRNN to Imitate Metal, Rock, and Punk Bands

    Full text link
    This early example of neural synthesis is a proof-of-concept for how machine learning can drive new types of music software. Creating music can be as simple as specifying a set of music influences on which a model trains. We demonstrate a method for generating albums that imitate bands in experimental music genres previously unrealized by traditional synthesis techniques (e.g. additive, subtractive, FM, granular, concatenative). Raw audio is generated autoregressively in the time-domain using an unconditional SampleRNN. We create six albums this way. Artwork and song titles are also generated using materials from the original artists' back catalog as training data. We try a fully-automated method and a human-curated method. We discuss its potential for machine-assisted production.Comment: 3 page

    Generating Black Metal and Math Rock: Beyond Bach, Beethoven, and Beatles

    Full text link
    We use a modified SampleRNN architecture to generate music in modern genres such as black metal and math rock. Unlike MIDI and symbolic models, SampleRNN generates raw audio in the time domain. This requirement becomes increasingly important in modern music styles where timbre and space are used compositionally. Long developmental compositions with rapid transitions between sections are possible by increasing the depth of the network beyond the number used for speech datasets. We are delighted by the unique characteristic artifacts of neural synthesis.Comment: 3 page
    corecore