2 research outputs found

    Knowledge-Enhanced Personalized Review Generation with Capsule Graph Neural Network

    Full text link
    Personalized review generation (PRG) aims to automatically produce review text reflecting user preference, which is a challenging natural language generation task. Most of previous studies do not explicitly model factual description of products, tending to generate uninformative content. Moreover, they mainly focus on word-level generation, but cannot accurately reflect more abstractive user preference in multiple aspects. To address the above issues, we propose a novel knowledge-enhanced PRG model based on capsule graph neural network~(Caps-GNN). We first construct a heterogeneous knowledge graph (HKG) for utilizing rich item attributes. We adopt Caps-GNN to learn graph capsules for encoding underlying characteristics from the HKG. Our generation process contains two major steps, namely aspect sequence generation and sentence generation. First, based on graph capsules, we adaptively learn aspect capsules for inferring the aspect sequence. Then, conditioned on the inferred aspect label, we design a graph-based copy mechanism to generate sentences by incorporating related entities or words from HKG. To our knowledge, we are the first to utilize knowledge graph for the PRG task. The incorporated KG information is able to enhance user preference at both aspect and word levels. Extensive experiments on three real-world datasets have demonstrated the effectiveness of our model on the PRG task.Comment: Accepted by CIKM 2020 (Long Paper

    CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Recommendation

    Full text link
    Recent research explores incorporating knowledge graphs (KG) into e-commerce recommender systems, not only to achieve better recommendation performance, but more importantly to generate explanations of why particular decisions are made. This can be achieved by explicit KG reasoning, where a model starts from a user node, sequentially determines the next step, and walks towards an item node of potential interest to the user. However, this is challenging due to the huge search space, unknown destination, and sparse signals over the KG, so informative and effective guidance is needed to achieve a satisfactory recommendation quality. To this end, we propose a CoArse-to-FinE neural symbolic reasoning approach (CAFE). It first generates user profiles as coarse sketches of user behaviors, which subsequently guide a path-finding process to derive reasoning paths for recommendations as fine-grained predictions. User profiles can capture prominent user behaviors from the history, and provide valuable signals about which kinds of path patterns are more likely to lead to potential items of interest for the user. To better exploit the user profiles, an improved path-finding algorithm called Profile-guided Path Reasoning (PPR) is also developed, which leverages an inventory of neural symbolic reasoning modules to effectively and efficiently find a batch of paths over a large-scale KG. We extensively experiment on four real-world benchmarks and observe substantial gains in the recommendation performance compared with state-of-the-art methods.Comment: Accepted in CIKM 202
    corecore