72 research outputs found

    Generating High Fidelity Images with Subscale Pixel Networks and Multidimensional Upscaling

    Full text link
    The unconditional generation of high fidelity images is a longstanding benchmark for testing the performance of image decoders. Autoregressive image models have been able to generate small images unconditionally, but the extension of these methods to large images where fidelity can be more readily assessed has remained an open problem. Among the major challenges are the capacity to encode the vast previous context and the sheer difficulty of learning a distribution that preserves both global semantic coherence and exactness of detail. To address the former challenge, we propose the Subscale Pixel Network (SPN), a conditional decoder architecture that generates an image as a sequence of sub-images of equal size. The SPN compactly captures image-wide spatial dependencies and requires a fraction of the memory and the computation required by other fully autoregressive models. To address the latter challenge, we propose to use Multidimensional Upscaling to grow an image in both size and depth via intermediate stages utilising distinct SPNs. We evaluate SPNs on the unconditional generation of CelebAHQ of size 256 and of ImageNet from size 32 to 256. We achieve state-of-the-art likelihood results in multiple settings, set up new benchmark results in previously unexplored settings and are able to generate very high fidelity large scale samples on the basis of both datasets

    MaCow: Masked Convolutional Generative Flow

    Full text link
    Flow-based generative models, conceptually attractive due to tractability of both the exact log-likelihood computation and latent-variable inference, and efficiency of both training and sampling, has led to a number of impressive empirical successes and spawned many advanced variants and theoretical investigations. Despite their computational efficiency, the density estimation performance of flow-based generative models significantly falls behind those of state-of-the-art autoregressive models. In this work, we introduce masked convolutional generative flow (MaCow), a simple yet effective architecture of generative flow using masked convolution. By restricting the local connectivity in a small kernel, MaCow enjoys the properties of fast and stable training, and efficient sampling, while achieving significant improvements over Glow for density estimation on standard image benchmarks, considerably narrowing the gap to autoregressive models.Comment: In Proceedings of Thirty-third Conference on Neural Information Processing Systems (NeurIPS-2019

    Hierarchical Autoregressive Image Models with Auxiliary Decoders

    Full text link
    Autoregressive generative models of images tend to be biased towards capturing local structure, and as a result they often produce samples which are lacking in terms of large-scale coherence. To address this, we propose two methods to learn discrete representations of images which abstract away local detail. We show that autoregressive models conditioned on these representations can produce high-fidelity reconstructions of images, and that we can train autoregressive priors on these representations that produce samples with large-scale coherence. We can recursively apply the learning procedure, yielding a hierarchy of progressively more abstract image representations. We train hierarchical class-conditional autoregressive models on the ImageNet dataset and demonstrate that they are able to generate realistic images at resolutions of 128×\times128 and 256×\times256 pixels. We also perform a human evaluation study comparing our models with both adversarial and likelihood-based state-of-the-art generative models.Comment: Updated: added human evaluation results, incorporated review feedbac

    Natural Image Manipulation for Autoregressive Models Using Fisher Scores

    Full text link
    Deep autoregressive models are one of the most powerful models that exist today which achieve state-of-the-art bits per dim. However, they lie at a strict disadvantage when it comes to controlled sample generation compared to latent variable models. Latent variable models such as VAEs and normalizing flows allow meaningful semantic manipulations in latent space, which autoregressive models do not have. In this paper, we propose using Fisher scores as a method to extract embeddings from an autoregressive model to use for interpolation and show that our method provides more meaningful sample manipulation compared to alternate embeddings such as network activations

    Scaling Autoregressive Video Models

    Full text link
    Due to the statistical complexity of video, the high degree of inherent stochasticity, and the sheer amount of data, generating natural video remains a challenging task. State-of-the-art video generation models often attempt to address these issues by combining sometimes complex, usually video-specific neural network architectures, latent variable models, adversarial training and a range of other methods. Despite their often high complexity, these approaches still fall short of generating high quality video continuations outside of narrow domains and often struggle with fidelity. In contrast, we show that conceptually simple autoregressive video generation models based on a three-dimensional self-attention mechanism achieve competitive results across multiple metrics on popular benchmark datasets, for which they produce continuations of high fidelity and realism. We also present results from training our models on Kinetics, a large scale action recognition dataset comprised of YouTube videos exhibiting phenomena such as camera movement, complex object interactions and diverse human movement. While modeling these phenomena consistently remains elusive, we hope that our results, which include occasional realistic continuations encourage further research on comparatively complex, large scale datasets such as Kinetics.Comment: International Conference on Learning Representations (ICLR) 202

    Generating Long Sequences with Sparse Transformers

    Full text link
    Transformers are powerful sequence models, but require time and memory that grows quadratically with the sequence length. In this paper we introduce sparse factorizations of the attention matrix which reduce this to O(nn)O(n \sqrt{n}). We also introduce a) a variation on architecture and initialization to train deeper networks, b) the recomputation of attention matrices to save memory, and c) fast attention kernels for training. We call networks with these changes Sparse Transformers, and show they can model sequences tens of thousands of timesteps long using hundreds of layers. We use the same architecture to model images, audio, and text from raw bytes, setting a new state of the art for density modeling of Enwik8, CIFAR-10, and ImageNet-64. We generate unconditional samples that demonstrate global coherence and great diversity, and show it is possible in principle to use self-attention to model sequences of length one million or more

    Generative Model with Dynamic Linear Flow

    Full text link
    Flow-based generative models are a family of exact log-likelihood models with tractable sampling and latent-variable inference, hence conceptually attractive for modeling complex distributions. However, flow-based models are limited by density estimation performance issues as compared to state-of-the-art autoregressive models. Autoregressive models, which also belong to the family of likelihood-based methods, however suffer from limited parallelizability. In this paper, we propose Dynamic Linear Flow (DLF), a new family of invertible transformations with partially autoregressive structure. Our method benefits from the efficient computation of flow-based methods and high density estimation performance of autoregressive methods. We demonstrate that the proposed DLF yields state-of-theart performance on ImageNet 32x32 and 64x64 out of all flow-based methods, and is competitive with the best autoregressive model. Additionally, our model converges 10 times faster than Glow (Kingma and Dhariwal, 2018). The code is available at https://github.com/naturomics/DLF.Comment: 12 pages, 7 figure

    Generating Diverse High-Fidelity Images with VQ-VAE-2

    Full text link
    We explore the use of Vector Quantized Variational AutoEncoder (VQ-VAE) models for large scale image generation. To this end, we scale and enhance the autoregressive priors used in VQ-VAE to generate synthetic samples of much higher coherence and fidelity than possible before. We use simple feed-forward encoder and decoder networks, making our model an attractive candidate for applications where the encoding and/or decoding speed is critical. Additionally, VQ-VAE requires sampling an autoregressive model only in the compressed latent space, which is an order of magnitude faster than sampling in the pixel space, especially for large images. We demonstrate that a multi-scale hierarchical organization of VQ-VAE, augmented with powerful priors over the latent codes, is able to generate samples with quality that rivals that of state of the art Generative Adversarial Networks on multifaceted datasets such as ImageNet, while not suffering from GAN's known shortcomings such as mode collapse and lack of diversity

    Classification Accuracy Score for Conditional Generative Models

    Full text link
    Deep generative models (DGMs) of images are now sufficiently mature that they produce nearly photorealistic samples and obtain scores similar to the data distribution on heuristics such as Frechet Inception Distance (FID). These results, especially on large-scale datasets such as ImageNet, suggest that DGMs are learning the data distribution in a perceptually meaningful space and can be used in downstream tasks. To test this latter hypothesis, we use class-conditional generative models from a number of model classes---variational autoencoders, autoregressive models, and generative adversarial networks (GANs)---to infer the class labels of real data. We perform this inference by training an image classifier using only synthetic data and using the classifier to predict labels on real data. The performance on this task, which we call Classification Accuracy Score (CAS), reveals some surprising results not identified by traditional metrics and constitute our contributions. First, when using a state-of-the-art GAN (BigGAN-deep), Top-1 and Top-5 accuracy decrease by 27.9\% and 41.6\%, respectively, compared to the original data; and conditional generative models from other model classes, such as Vector-Quantized Variational Autoencoder-2 (VQ-VAE-2) and Hierarchical Autoregressive Models (HAMs), substantially outperform GANs on this benchmark. Second, CAS automatically surfaces particular classes for which generative models failed to capture the data distribution, and were previously unknown in the literature. Third, we find traditional GAN metrics such as Inception Score (IS) and FID neither predictive of CAS nor useful when evaluating non-GAN models. Furthermore, in order to facilitate better diagnoses of generative models, we open-source the proposed metric

    Latent Video Transformer

    Full text link
    The video generation task can be formulated as a prediction of future video frames given some past frames. Recent generative models for videos face the problem of high computational requirements. Some models require up to 512 Tensor Processing Units for parallel training. In this work, we address this problem via modeling the dynamics in a latent space. After the transformation of frames into the latent space, our model predicts latent representation for the next frames in an autoregressive manner. We demonstrate the performance of our approach on BAIR Robot Pushing and Kinetics-600 datasets. The approach tends to reduce requirements to 8 Graphical Processing Units for training the models while maintaining comparable generation quality
    • …
    corecore