48,574 research outputs found

    Learning to Map Natural Language to Executable Programs Over Databases

    Get PDF
    Natural language is a fundamental form of information and communication and is becoming the next frontier in computer interfaces. As the amount of data available online has increased exponentially, so has the need for Natural Language Interfaces (NLIs, which is not used for natural language inference in this thesis) to connect the data and the user by easily using natural language, significantly promoting the possibility and efficiency of information access for many users besides data experts. All consumer-facing software will one day have a dialogue interface, and this is the next vital leap in the evolution of search engines. Such intelligent dialogue systems should understand the meaning of language grounded in various contexts and generate effective language responses in different forms for information requests and human-computer communication.Developing these intelligent systems is challenging due to (1) limited benchmarks to drive advancements, (2) alignment mismatches between natural language and formal programs, (3) lack of trustworthiness and interpretability, (4) context dependencies in both human conversational interactions and the target programs, and (5) joint language understanding between dialog questions and NLI environments (e.g. databases and knowledge graphs). This dissertation presents several datasets, neural algorithms, and language models to address these challenges for developing deep learning technologies for conversational natural language interfaces (more specifically, NLIs to Databases or NLIDB). First, to drive advancements towards neural-based conversational NLIs, we design and propose several complex and cross-domain NLI benchmarks, along with introducing several datasets. These datasets enable training large, deep learning models. The evaluation is done on unseen databases. (e.g., about course arrangement). Systems must generalize well to not only new SQL queries but also to unseen database schemas to perform well on these tasks. Furthermore, in real-world applications, users often access information in a multi-turn interaction with the system by asking a sequence of related questions. The users may explicitly refer to or omit previously mentioned entities and constraints and may introduce refinements, additions, or substitutions to what has already been said. Therefore, some of them require systems to model dialog dynamics and generate natural language explanations for user verification. The full dialogue interaction with the system’s responses is also important as this supports clarifying ambiguous questions, verifying returned results, and notifying users of unanswerable or unrelated questions. A robust dialogue-based NLI system that can engage with users by forming its responses has thus become an increasingly necessary component for the query process. Moreover, this thesis presents the development of scalable algorithms designed to parse complex and sequential questions to formal programs (e.g., mapping questions to SQL queries that can execute against databases). We propose a novel neural model that utilizes type information from knowledge graphs to better understand rare entities and numbers in natural language questions. We also introduce a neural model based on syntax tree neural networks, which was the first methodology proposed for generating complex programs from language. Finally, language modeling creates contextualized vector representations of words by training a model to predict the next word given context words, which are the basis of deep learning for NLP. Recently, pre-trained language models such as BERT and RoBERTa achieve tremendous success in many natural language processing tasks such as text understanding and reading comprehension. However, most language models are pre-trained only on free-text such as Wikipedia articles and Books. Given that language in semantic parsing is usually related to some formal representations such as logic forms and SQL queries and has to be grounded in structural environments (e.g., databases), we propose better language models for NLIs by enforcing such compositional interpolation in them. To show they could better jointly understand dialog questions and NLI environments (e.g. databases and knowledge graphs), we show that these language models achieve new state-of-the-art results for seven representative tasks on semantic parsing, dialogue state tracking, and question answering. Also, our proposed pre-training method is much more effective than other prior work

    Emulating the Human Mind: A Neural-symbolic Link Prediction Model with Fast and Slow Reasoning and Filtered Rules

    Full text link
    Link prediction is an important task in addressing the incompleteness problem of knowledge graphs (KG). Previous link prediction models suffer from issues related to either performance or explanatory capability. Furthermore, models that are capable of generating explanations, often struggle with erroneous paths or reasoning leading to the correct answer. To address these challenges, we introduce a novel Neural-Symbolic model named FaSt-FLiP (stands for Fast and Slow Thinking with Filtered rules for Link Prediction task), inspired by two distinct aspects of human cognition: "commonsense reasoning" and "thinking, fast and slow." Our objective is to combine a logical and neural model for enhanced link prediction. To tackle the challenge of dealing with incorrect paths or rules generated by the logical model, we propose a semi-supervised method to convert rules into sentences. These sentences are then subjected to assessment and removal of incorrect rules using an NLI (Natural Language Inference) model. Our approach to combining logical and neural models involves first obtaining answers from both the logical and neural models. These answers are subsequently unified using an Inference Engine module, which has been realized through both algorithmic implementation and a novel neural model architecture. To validate the efficacy of our model, we conducted a series of experiments. The results demonstrate the superior performance of our model in both link prediction metrics and the generation of more reliable explanations

    Learning to Act Properly: Predicting and Explaining Affordances from Images

    Full text link
    We address the problem of affordance reasoning in diverse scenes that appear in the real world. Affordances relate the agent's actions to their effects when taken on the surrounding objects. In our work, we take the egocentric view of the scene, and aim to reason about action-object affordances that respect both the physical world as well as the social norms imposed by the society. We also aim to teach artificial agents why some actions should not be taken in certain situations, and what would likely happen if these actions would be taken. We collect a new dataset that builds upon ADE20k, referred to as ADE-Affordance, which contains annotations enabling such rich visual reasoning. We propose a model that exploits Graph Neural Networks to propagate contextual information from the scene in order to perform detailed affordance reasoning about each object. Our model is showcased through various ablation studies, pointing to successes and challenges in this complex task

    CausaLM: Causal Model Explanation Through Counterfactual Language Models

    Full text link
    Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all ML-based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.Comment: Our code and data are available at: https://amirfeder.github.io/CausaLM/ Under review for the Computational Linguistics journa

    e-SNLI: Natural Language Inference with Natural Language Explanations

    Get PDF
    In order for machine learning to garner widespread public adoption, models must be able to provide interpretable and robust explanations for their decisions, as well as learn from human-provided explanations at train time. In this work, we extend the Stanford Natural Language Inference dataset with an additional layer of human-annotated natural language explanations of the entailment relations. We further implement models that incorporate these explanations into their training process and output them at test time. We show how our corpus of explanations, which we call e-SNLI, can be used for various goals, such as obtaining full sentence justifications of a model's decisions, improving universal sentence representations and transferring to out-of-domain NLI datasets. Our dataset thus opens up a range of research directions for using natural language explanations, both for improving models and for asserting their trust.Comment: NeurIPS 201

    Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach

    Full text link
    Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously hard to interpret. In this paper, we adapt "pedagogical approaches" (from the literature on neural networks) so as to interpret embedding models by extracting weighted Horn rules from them. We show how pedagogical approaches have to be adapted to take upon the large-scale relational aspects of knowledge bases and show experimentally their strengths and weaknesses.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Swede
    • …
    corecore