591 research outputs found

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer

    Topological arbiters

    Full text link
    This paper initiates the study of topological arbiters, a concept rooted in Poincare-Lefschetz duality. Given an n-dimensional manifold W, a topological arbiter associates a value 0 or 1 to codimension zero submanifolds of W, subject to natural topological and duality axioms. For example, there is a unique arbiter on RP2RP^2, which reports the location of the essential 1-cycle. In contrast, we show that there exists an uncountable collection of topological arbiters in dimension 4. Families of arbiters, not induced by homology, are also shown to exist in higher dimensions. The technical ingredients underlying the four dimensional results are secondary obstructions to generalized link-slicing problems. For classical links in the 3-sphere the construction relies on the existence of nilpotent embedding obstructions in dimension 4, reflected in particular by the Milnor group. In higher dimensions novel arbiters are produced using nontrivial squares in stable homotopy theory. The concept of "topological arbiter" derives from percolation and from 4-dimensional surgery. It is not the purpose of this paper to advance either of these subjects, but rather to study the concept for its own sake. However in appendices we give both an application to percolation, and the current understanding of the relationship between arbiters and surgery. An appendix also introduces a more general notion of a multi-arbiter. Properties and applications are discussed, including a construction of non-homological multi-arbiters.Comment: v3: A minor reorganization of the pape
    • …
    corecore