4 research outputs found

    Generate Identity-Preserving Faces by Generative Adversarial Networks

    Full text link
    Generating identity-preserving faces aims to generate various face images keeping the same identity given a target face image. Although considerable generative models have been developed in recent years, it is still challenging to simultaneously acquire high quality of facial images and preserve the identity. Here we propose a compelling method using generative adversarial networks (GAN). Concretely, we leverage the generator of trained GAN to generate plausible faces and FaceNet as an identity-similarity discriminator to ensure the identity. Experimental results show that our method is qualified to generate both plausible and identity-preserving faces with high quality. In addition, our method provides a universal framework which can be realized in various ways by combining different face generators and identity-similarity discriminator.Comment: 9 page

    Face Translation between Images and Videos using Identity-aware CycleGAN

    Full text link
    This paper presents a new problem of unpaired face translation between images and videos, which can be applied to facial video prediction and enhancement. In this problem there exist two major technical challenges: 1) designing a robust translation model between static images and dynamic videos, and 2) preserving facial identity during image-video translation. To address such two problems, we generalize the state-of-the-art image-to-image translation network (Cycle-Consistent Adversarial Networks) to the image-to-video/video-to-image translation context by exploiting a image-video translation model and an identity preservation model. In particular, we apply the state-of-the-art Wasserstein GAN technique to the setting of image-video translation for better convergence, and we meanwhile introduce a face verificator to ensure the identity. Experiments on standard image/video face datasets demonstrate the effectiveness of the proposed model in both terms of qualitative and quantitative evaluations

    Flipped-Adversarial AutoEncoders

    Full text link
    We propose a flipped-Adversarial AutoEncoder (FAAE) that simultaneously trains a generative model G that maps an arbitrary latent code distribution to a data distribution and an encoder E that embodies an "inverse mapping" that encodes a data sample into a latent code vector. Unlike previous hybrid approaches that leverage adversarial training criterion in constructing autoencoders, FAAE minimizes re-encoding errors in the latent space and exploits adversarial criterion in the data space. Experimental evaluations demonstrate that the proposed framework produces sharper reconstructed images while at the same time enabling inference that captures rich semantic representation of data

    Two Birds with One Stone: Transforming and Generating Facial Images with Iterative GAN

    Full text link
    Generating high fidelity identity-preserving faces with different facial attributes has a wide range of applications. Although a number of generative models have been developed to tackle this problem, there is still much room for further improvement.In paticular, the current solutions usually ignore the perceptual information of images, which we argue that it benefits the output of a high-quality image while preserving the identity information, especially in facial attributes learning area.To this end, we propose to train GAN iteratively via regularizing the min-max process with an integrated loss, which includes not only the per-pixel loss but also the perceptual loss. In contrast to the existing methods only deal with either image generation or transformation, our proposed iterative architecture can achieve both of them. Experiments on the multi-label facial dataset CelebA demonstrate that the proposed model has excellent performance on recognizing multiple attributes, generating a high-quality image, and transforming image with controllable attributes
    corecore