2,911 research outputs found

    Supervised and Unsupervised Transfer Learning for Question Answering

    Full text link
    Although transfer learning has been shown to be successful for tasks like object and speech recognition, its applicability to question answering (QA) has yet to be well-studied. In this paper, we conduct extensive experiments to investigate the transferability of knowledge learned from a source QA dataset to a target dataset using two QA models. The performance of both models on a TOEFL listening comprehension test (Tseng et al., 2016) and MCTest (Richardson et al., 2013) is significantly improved via a simple transfer learning technique from MovieQA (Tapaswi et al., 2016). In particular, one of the models achieves the state-of-the-art on all target datasets; for the TOEFL listening comprehension test, it outperforms the previous best model by 7%. Finally, we show that transfer learning is helpful even in unsupervised scenarios when correct answers for target QA dataset examples are not available.Comment: To appear in NAACL HLT 2018 (long paper

    The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision

    Full text link
    We propose the Neuro-Symbolic Concept Learner (NS-CL), a model that learns visual concepts, words, and semantic parsing of sentences without explicit supervision on any of them; instead, our model learns by simply looking at images and reading paired questions and answers. Our model builds an object-based scene representation and translates sentences into executable, symbolic programs. To bridge the learning of two modules, we use a neuro-symbolic reasoning module that executes these programs on the latent scene representation. Analogical to human concept learning, the perception module learns visual concepts based on the language description of the object being referred to. Meanwhile, the learned visual concepts facilitate learning new words and parsing new sentences. We use curriculum learning to guide the searching over the large compositional space of images and language. Extensive experiments demonstrate the accuracy and efficiency of our model on learning visual concepts, word representations, and semantic parsing of sentences. Further, our method allows easy generalization to new object attributes, compositions, language concepts, scenes and questions, and even new program domains. It also empowers applications including visual question answering and bidirectional image-text retrieval.Comment: ICLR 2019 (Oral). Project page: http://nscl.csail.mit.edu

    A Method for Creating Structural Models of Text Documents Using Neural Networks.

    Get PDF
    The article describes modern neural network BERT-based models and considers their application for Natural Language Processing tasks such as question answering and named entity recognition. The article presents a method for solving the problem of automatically creating structural models of text documents. The proposed method is hybrid and is based on jointly utilizing several NLP models. The method builds a structural model of a document by extracting sentences that correspond to various aspects of the document. Information extraction is performed by using the BERT Question Answering model with questions that are prepared separately for each aspect. The answers are filtered via the BERT Named Entity Recognition model and used to generate the contents of each field of the structural model. The article proposes two algorithms for field content generation: Exclusive answer choosing algorithm and Generalizing answer forming algorithm, that are used for short and voluminous fields respectively. The article also describes the software implementation of the proposed method and discusses the results of experiments conducted to evaluate the quality of the method.The article describes modern neural network BERT-based models and considers their application for Natural Language Processing tasks such as question answering and named entity recognition. The article presents a method for solving the problem of automatically creating structural models of text documents. The proposed method is hybrid and is based on jointly utilizing several NLP models. The method builds a structural model of a document by extracting sentences that correspond to various aspects of the document. Information extraction is performed by using the BERT Question Answering model with questions that are prepared separately for each aspect. The answers are filtered via the BERT Named Entity Recognition model and used to generate the contents of each field of the structural model. The article proposes two algorithms for field content generation: Exclusive answer choosing algorithm and Generalizing answer forming algorithm, that are used for short and voluminous fields respectively. The article also describes the software implementation of the proposed method and discusses the results of experiments conducted to evaluate the quality of the method

    Chain of Thought Prompt Tuning in Vision Language Models

    Full text link
    Language-Image Pre-training has demonstrated promising results on zero-shot and few-shot downstream tasks by prompting visual models with natural language prompts. However, most recent studies only use a single prompt for tuning, neglecting the inherent step-to-step cognitive reasoning process that humans conduct in complex task settings, for example, when processing images from unfamiliar domains. Chain of Thought is a simple and effective approximation to human reasoning process and has been proven useful for natural language processing (NLP) tasks. Based on this cognitive intuition, we believe that conducting effective reasoning is also an important problem in visual tasks, and a chain of thought could be a solution to this problem. In this work, we propose a novel chain of thought prompt tuning for vision-language modeling. Extensive experiments show that our method not only generalizes better in image classification tasks, has greater transferability beyond a single dataset, and has stronger domain generalization performance, but also performs much better in imagetext retrieval and visual question answering, which require more reasoning capabilities. We are the first to successfully adapt chain-of-thought prompting that combines visual and textual embeddings. We will release our code

    Benchmarking Long-tail Generalization with Likelihood Splits

    Full text link
    In order to reliably process natural language, NLP systems must generalize to the long tail of rare utterances. We propose a method to create challenging benchmarks that require generalizing to the tail of the distribution by re-splitting existing datasets. We create 'Likelihood Splits' where examples that are assigned lower likelihood by a pre-trained language model (LM) are placed in the test set, and more likely examples are in the training set. This simple approach can be customized to construct meaningful train-test splits for a wide range of tasks. Likelihood Splits surface more challenges than random splits: relative error rates of state-of-the-art models increase by 59% for semantic parsing on Spider, 93% for natural language inference on SNLI, and 33% for yes/no question answering on BoolQ, on our splits compared with the corresponding random splits. Moreover, Likelihood Splits create fairer benchmarks than adversarial filtering; when the LM used to create the splits is also employed as the task model, our splits do not unfairly penalize the LM.Comment: Updated final Findings of EACL versio
    corecore