287 research outputs found

    Beyond Real-world Benchmark Datasets: An Empirical Study of Node Classification with GNNs

    Full text link
    Graph Neural Networks (GNNs) have achieved great success on a node classification task. Despite the broad interest in developing and evaluating GNNs, they have been assessed with limited benchmark datasets. As a result, the existing evaluation of GNNs lacks fine-grained analysis from various characteristics of graphs. Motivated by this, we conduct extensive experiments with a synthetic graph generator that can generate graphs having controlled characteristics for fine-grained analysis. Our empirical studies clarify the strengths and weaknesses of GNNs from four major characteristics of real-world graphs with class labels of nodes, i.e., 1) class size distributions (balanced vs. imbalanced), 2) edge connection proportions between classes (homophilic vs. heterophilic), 3) attribute values (biased vs. random), and 4) graph sizes (small vs. large). In addition, to foster future research on GNNs, we publicly release our codebase that allows users to evaluate various GNNs with various graphs. We hope this work offers interesting insights for future research.Comment: Accepted to NeurIPS 2022 Datasets and Benchmarks Track. 21 pages, 15 figure

    Contextual Centrality: Going Beyond Network Structures

    Full text link
    Centrality is a fundamental network property which ranks nodes by their structural importance. However, structural importance may not suffice to predict successful diffusions in a wide range of applications, such as word-of-mouth marketing and political campaigns. In particular, nodes with high structural importance may contribute negatively to the objective of the diffusion. To address this problem, we propose contextual centrality, which integrates structural positions, the diffusion process, and, most importantly, nodal contributions to the objective of the diffusion. We perform an empirical analysis of the adoption of microfinance in Indian villages and weather insurance in Chinese villages. Results show that contextual centrality of the first-informed individuals has higher predictive power towards the eventual adoption outcomes than other standard centrality measures. Interestingly, when the product of diffusion rate pp and the largest eigenvalue λ1\lambda_1 is larger than one and diffusion period is long, contextual centrality linearly scales with eigenvector centrality. This approximation reveals that contextual centrality identifies scenarios where a higher diffusion rate of individuals may negatively influence the cascade payoff. Further simulations on the synthetic and real-world networks show that contextual centrality has the advantage of selecting an individual whose local neighborhood generates a high cascade payoff when pλ1<1p \lambda_1 < 1. Under this condition, stronger homophily leads to higher cascade payoff. Our results suggest that contextual centrality captures more complicated dynamics on networks and has significant implications for applications, such as information diffusion, viral marketing, and political campaigns

    On Addressing the Limitations of Graph Neural Networks

    Full text link
    This report gives a summary of two problems about graph convolutional networks (GCNs): over-smoothing and heterophily challenges, and outlines future directions to explore.Comment: arXiv admin note: substantial text overlap with arXiv:2109.05641, arXiv:2210.0760

    Equivariant Hypergraph Diffusion Neural Operators

    Full text link
    Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data and further solve relevant prediction tasks built upon such higher-order relations. However, higher-order relations in practice contain complex patterns and are often highly irregular. So, it is often challenging to design an HNN that suffices to express those relations while keeping computational efficiency. Inspired by hypergraph diffusion algorithms, this work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators that can model a wide range of higher-order relations. ED-HNN can be implemented efficiently by combining star expansions of hypergraphs with standard message passing neural networks. ED-HNN further shows great superiority in processing heterophilic hypergraphs and constructing deep models. We evaluate ED-HNN for node classification on nine real-world hypergraph datasets. ED-HNN uniformly outperforms the best baselines over these nine datasets and achieves more than 2\%↑\uparrow in prediction accuracy over four datasets therein.Comment: Code: https://github.com/Graph-COM/ED-HN

    GPNet: Simplifying Graph Neural Networks via Multi-channel Geometric Polynomials

    Full text link
    Graph Neural Networks (GNNs) are a promising deep learning approach for circumventing many real-world problems on graph-structured data. However, these models usually have at least one of four fundamental limitations: over-smoothing, over-fitting, difficult to train, and strong homophily assumption. For example, Simple Graph Convolution (SGC) is known to suffer from the first and fourth limitations. To tackle these limitations, we identify a set of key designs including (D1) dilated convolution, (D2) multi-channel learning, (D3) self-attention score, and (D4) sign factor to boost learning from different types (i.e. homophily and heterophily) and scales (i.e. small, medium, and large) of networks, and combine them into a graph neural network, GPNet, a simple and efficient one-layer model. We theoretically analyze the model and show that it can approximate various graph filters by adjusting the self-attention score and sign factor. Experiments show that GPNet consistently outperforms baselines in terms of average rank, average accuracy, complexity, and parameters on semi-supervised and full-supervised tasks, and achieves competitive performance compared to state-of-the-art model with inductive learning task.Comment: 15 pages, 15 figure
    • …
    corecore