56 research outputs found

    Square lattice Ising model susceptibility: Series expansion method and differential equation for χ(3)\chi^{(3)}

    Full text link
    In a previous paper (J. Phys. A {\bf 37} (2004) 9651-9668) we have given the Fuchsian linear differential equation satisfied by χ(3)\chi^{(3)}, the ``three-particle'' contribution to the susceptibility of the isotropic square lattice Ising model. This paper gives the details of the calculations (with some useful tricks and tools) allowing one to obtain long series in polynomial time. The method is based on series expansion in the variables that appear in the (n1)(n-1)-dimensional integrals representing the nn-particle contribution to the isotropic square lattice Ising model susceptibility χ\chi . The integration rules are straightforward due to remarkable formulas we derived for these variables. We obtain without any numerical approximation χ(3)\chi^{(3)} as a fully integrated series in the variable w=s/2/(1+s2)w=s/2/(1+s^{2}), where s=sh(2K) s =sh (2K), with K=J/kTK=J/kT the conventional Ising model coupling constant. We also give some perspectives and comments on these results.Comment: 28 pages, no figur

    Globally nilpotent differential operators and the square Ising model

    Full text link
    We recall various multiple integrals related to the isotropic square Ising model, and corresponding, respectively, to the n-particle contributions of the magnetic susceptibility, to the (lattice) form factors, to the two-point correlation functions and to their lambda-extensions. These integrals are holonomic and even G-functions: they satisfy Fuchsian linear differential equations with polynomial coefficients and have some arithmetic properties. We recall the explicit forms, found in previous work, of these Fuchsian equations. These differential operators are very selected Fuchsian linear differential operators, and their remarkable properties have a deep geometrical origin: they are all globally nilpotent, or, sometimes, even have zero p-curvature. Focusing on the factorised parts of all these operators, we find out that the global nilpotence of the factors corresponds to a set of selected structures of algebraic geometry: elliptic curves, modular curves, and even a remarkable weight-1 modular form emerging in the three-particle contribution χ(3) \chi^{(3)} of the magnetic susceptibility of the square Ising model. In the case where we do not have G-functions, but Hamburger functions (one irregular singularity at 0 or \infty) that correspond to the confluence of singularities in the scaling limit, the p-curvature is also found to verify new structures associated with simple deformations of the nilpotent property.Comment: 55 page

    On uniformization of Burnside's curve y2=x5xy^2=x^5-x

    Full text link
    Main objects of uniformization of the curve y2=x5xy^2=x^5-x are studied: its Burnside's parametrization, corresponding Schwarz's equation, and accessory parameters. As a result we obtain the first examples of solvable Fuchsian equations on torus and exhibit number-theoretic integer qq-series for uniformizing functions, relevant modular forms, and analytic series for holomorphic Abelian integrals. A conjecture of Whittaker for hyperelliptic curves and its hypergeometric reducibility are discussed. We also consider the conversion between Burnside's and Whittaker's uniformizations.Comment: Final version. LaTeX, 23 pages, 1 figure. The handbook for elliptic functions has been moved to arXiv:0808.348

    Non-Schlesinger Deformations of Ordinary Differential Equations with Rational Coefficients

    Full text link
    We consider deformations of 2×22\times2 and 3×33\times3 matrix linear ODEs with rational coefficients with respect to singular points of Fuchsian type which don't satisfy the well-known system of Schlesinger equations (or its natural generalization). Some general statements concerning reducibility of such deformations for 2×22\times2 ODEs are proved. An explicit example of the general non-Schlesinger deformation of 2×22\times2-matrix ODE of the Fuchsian type with 4 singular points is constructed and application of such deformations to the construction of special solutions of the corresponding Schlesinger systems is discussed. Some examples of isomonodromy and non-isomonodromy deformations of 3×33\times3 matrix ODEs are considered. The latter arise as the compatibility conditions with linear ODEs with non-singlevalued coefficients.Comment: 15 pages, to appear in J. Phys.

    Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations

    Full text link
    We give the exact expressions of the partial susceptibilities χd(3)\chi^{(3)}_d and χd(4)\chi^{(4)}_d for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, 3F2([1/3,2/3,3/2],[1,1];z)_3F_2([1/3,2/3,3/2],\, [1,1];\, z) and 4F3([1/2,1/2,1/2,1/2],[1,1,1];z)_4F_3([1/2,1/2,1/2,1/2],\, [1,1,1]; \, z) hypergeometric functions. By solving the connection problems we analytically compute the behavior at all finite singular points for χd(3)\chi^{(3)}_d and χd(4)\chi^{(4)}_d. We also give new results for χd(5)\chi^{(5)}_d. We see in particular, the emergence of a remarkable order-six operator, which is such that its symmetric square has a rational solution. These new exact results indicate that the linear differential operators occurring in the nn-fold integrals of the Ising model are not only "Derived from Geometry" (globally nilpotent), but actually correspond to "Special Geometry" (homomorphic to their formal adjoint). This raises the question of seeing if these "special geometry" Ising-operators, are "special" ones, reducing, in fact systematically, to (selected, k-balanced, ...) q+1Fq_{q+1}F_q hypergeometric functions, or correspond to the more general solutions of Calabi-Yau equations.Comment: 35 page

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, are actually diagonals of rational functions. As a consequence, the power series expansions of these solutions of linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. Besides, in a more enumerative combinatorics context, we show that generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We give a large set of results illustrating the fact that the unique analytical solution of Calabi-Yau ODEs, and more generally of MUM ODEs, is, almost always, diagonal of rational functions. We revisit Christol's conjecture that globally bounded series of G-operators are necessarily diagonals of rational functions. We provide a large set of examples of globally bounded series, or series with integer coefficients, associated with modular forms, or Hadamard product of modular forms, or associated with Calabi-Yau ODEs, underlying the concept of modularity. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity (in particular integrality of the Taylor coefficients of mirror map), introducing new representations of Yukawa couplings.Comment: 100 page

    A Dialogue of Multipoles: Matched Asymptotic Expansion for Caged Black Holes

    Full text link
    No analytic solution is known to date for a black hole in a compact dimension. We develop an analytic perturbation theory where the small parameter is the size of the black hole relative to the size of the compact dimension. We set up a general procedure for an arbitrary order in the perturbation series based on an asymptotic matched expansion between two coordinate patches: the near horizon zone and the asymptotic zone. The procedure is ordinary perturbation expansion in each zone, where additionally some boundary data comes from the other zone, and so the procedure alternates between the zones. It can be viewed as a dialogue of multipoles where the black hole changes its shape (mass multipoles) in response to the field (multipoles) created by its periodic "mirrors", and that in turn changes its field and so on. We present the leading correction to the full metric including the first correction to the area-temperature relation, the leading term for black hole eccentricity and the "Archimedes effect". The next order corrections will appear in a sequel. On the way we determine independently the static perturbations of the Schwarzschild black hole in dimension d>=5, where the system of equations can be reduced to "a master equation" - a single ordinary differential equation. The solutions are hypergeometric functions which in some cases reduce to polynomials.Comment: 47 pages, 12 figures, minor corrections described at the end of the introductio
    corecore