27 research outputs found

    Specifics of cardiac magnetic resonance imaging in children

    Get PDF
    SummaryThis review points out three specific features of cardiac magnetic resonance imaging (MRI) in children: the small size of the heart modifies the usual balance between signal-to-noise ratio and spatial resolution; the higher and more variable heart rate limits tissue characterization and temporal resolution; and motion artefacts (notably respiratory motions) must be dealt with. In the second part of this review, we present the current and future practices of cardiac magnetic resonance (CMR) in children, based on the experience of all French paediatric cardiac MRI centres

    Motion estimation and correction for simultaneous PET/MR using SIRF and CIL

    Get PDF
    SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'

    Motion estimation and correction for simultaneous PET/MR using SIRF and CIL

    Get PDF
    SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'

    Myocardial arterial spin labeling

    Get PDF

    Improved myocardial scar visualization with fast free-breathing motion-compensated black-blood T<sub>1</sub>-rho-prepared late gadolinium enhancement MRI.

    Get PDF
    Clinical guidelines recommend the use of bright-blood late gadolinium enhancement (BR-LGE) for the detection and quantification of regional myocardial fibrosis and scar. This technique, however, may suffer from poor contrast at the blood-scar interface, particularly in patients with subendocardial myocardial infarction. The purpose of this study was to assess the clinical performance of a two-dimensional black-blood LGE (BL-LGE) sequence, which combines free-breathing T &lt;sub&gt;1&lt;/sub&gt; -rho-prepared single-shot acquisitions with an advanced non-rigid motion-compensated patch-based reconstruction. Extended phase graph simulations and phantom experiments were performed to investigate the performance of the motion-correction algorithm and to assess the black-blood properties of the proposed sequence. Fifty-one patients (37 men, 14 women; mean age, 55 ± 15 [SD] years; age range: 19-81 years) with known or suspected cardiac disease prospectively underwent free-breathing T &lt;sub&gt;1&lt;/sub&gt; -rho-prepared BL-LGE imaging with inline non-rigid motion-compensated patch-based reconstruction at 1.5T. Conventional breath-held BR-LGE images were acquired for comparison purposes. Acquisition times were recorded. Two readers graded the image quality and relative contrasts were calculated. Presence, location, and extent of LGE were evaluated. BL-LGE images were acquired with full ventricular coverage in 115 ± 25 (SD) sec (range: 64-160 sec). Image quality was significantly higher on free-breathing BL-LGE imaging than on its breath-held BR-LGE counterpart (3.6 ± 0.7 [SD] [range: 2-4] vs. 3.9 ± 0.2 [SD] [range: 3-4]) (P &lt;0.01) and was graded as diagnostic for 44/51 (86%) patients. The mean scar-to-myocardium and scar-to-blood relative contrasts were significantly higher on BL-LGE images (P &lt; 0.01 for both). The extent of LGE was larger on BL-LGE (median, 5 segments [IQR: 2, 7 segments] vs. median, 4 segments [IQR: 1, 6 segments]) (P &lt; 0.01), the method being particularly sensitive in segments with LGE involving the subendocardium or papillary muscles. In eight patients (16%), BL-LGE could ascertain or rule out a diagnosis otherwise inconclusive on BR-LGE. Free-breathing T &lt;sub&gt;1&lt;/sub&gt; -rho-prepared BL-LGE imaging with inline motion compensated reconstruction offers a promising diagnostic technology for the non-invasive assessment of myocardial injuries

    Reconstruction of Cardiac Cine MRI under Free-breathing using Motion-guided Deformable Alignment and Multi-resolution Fusion

    Full text link
    Objective: Cardiac cine magnetic resonance imaging (MRI) is one of the important means to assess cardiac functions and vascular abnormalities. However, due to cardiac beat, blood flow, or the patient's involuntary movement during the long acquisition, the reconstructed images are prone to motion artifacts that affect the clinical diagnosis. Therefore, accelerated cardiac cine MRI acquisition to achieve high-quality images is necessary for clinical practice. Approach: A novel end-to-end deep learning network is developed to improve cardiac cine MRI reconstruction under free breathing conditions. First, a U-Net is adopted to obtain the initial reconstructed images in k-space. Further to remove the motion artifacts, the Motion-Guided Deformable Alignment (MGDA) method with second-order bidirectional propagation is introduced to align the adjacent cine MRI frames by maximizing spatial-temporal information to alleviate motion artifacts. Finally, the Multi-Resolution Fusion (MRF) module is designed to correct the blur and artifacts generated from alignment operation and obtain the last high-quality reconstructed cardiac images. Main results: At an 8×\times acceleration rate, the numerical measurements on the ACDC dataset are SSIM of 78.40%±\pm4.57%, PSNR of 30.46±\pm1.22 dB, and NMSE of 0.0468±\pm0.0075. On the ACMRI dataset, the results are SSIM of 87.65%±\pm4.20%, PSNR of 30.04±\pm1.18 dB, and NMSE of 0.0473±\pm0.0072. Significance: The proposed method exhibits high-quality results with richer details and fewer artifacts for cardiac cine MRI reconstruction on different accelerations under free breathing conditions.Comment: 28 pages, 5 tables, 11 figure
    corecore