334 research outputs found

    Improved Nearly-MDS Expander Codes

    Full text link
    A construction of expander codes is presented with the following three properties: (i) the codes lie close to the Singleton bound, (ii) they can be encoded in time complexity that is linear in their code length, and (iii) they have a linear-time bounded-distance decoder. By using a version of the decoder that corrects also erasures, the codes can replace MDS outer codes in concatenated constructions, thus resulting in linear-time encodable and decodable codes that approach the Zyablov bound or the capacity of memoryless channels. The presented construction improves on an earlier result by Guruswami and Indyk in that any rate and relative minimum distance that lies below the Singleton bound is attainable for a significantly smaller alphabet size.Comment: Part of this work was presented at the 2004 IEEE Int'l Symposium on Information Theory (ISIT'2004), Chicago, Illinois (June 2004). This work was submitted to IEEE Transactions on Information Theory on January 21, 2005. To appear in IEEE Transactions on Information Theory, August 2006. 12 page

    Correcting a Fraction of Errors in Nonbinary Expander Codes with Linear Programming

    Full text link
    A linear-programming decoder for \emph{nonbinary} expander codes is presented. It is shown that the proposed decoder has the maximum-likelihood certificate properties. It is also shown that this decoder corrects any pattern of errors of a relative weight up to approximately 1/4 \delta_A \delta_B (where \delta_A and \delta_B are the relative minimum distances of the constituent codes).Comment: Part of this work was presented at the IEEE International Symposium on Information Theory 2009, Seoul, Kore

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201
    • …
    corecore