13,888 research outputs found

    On The Power of Tree Projections: Structural Tractability of Enumerating CSP Solutions

    Full text link
    The problem of deciding whether CSP instances admit solutions has been deeply studied in the literature, and several structural tractability results have been derived so far. However, constraint satisfaction comes in practice as a computation problem where the focus is either on finding one solution, or on enumerating all solutions, possibly projected to some given set of output variables. The paper investigates the structural tractability of the problem of enumerating (possibly projected) solutions, where tractability means here computable with polynomial delay (WPD), since in general exponentially many solutions may be computed. A general framework based on the notion of tree projection of hypergraphs is considered, which generalizes all known decomposition methods. Tractability results have been obtained both for classes of structures where output variables are part of their specification, and for classes of structures where computability WPD must be ensured for any possible set of output variables. These results are shown to be tight, by exhibiting dichotomies for classes of structures having bounded arity and where the tree decomposition method is considered

    Term Graph Representations for Cyclic Lambda-Terms

    Full text link
    We study various representations for cyclic lambda-terms as higher-order or as first-order term graphs. We focus on the relation between `lambda-higher-order term graphs' (lambda-ho-term-graphs), which are first-order term graphs endowed with a well-behaved scope function, and their representations as `lambda-term-graphs', which are plain first-order term graphs with scope-delimiter vertices that meet certain scoping requirements. Specifically we tackle the question: Which class of first-order term graphs admits a faithful embedding of lambda-ho-term-graphs in the sense that: (i) the homomorphism-based sharing-order on lambda-ho-term-graphs is preserved and reflected, and (ii) the image of the embedding corresponds closely to a natural class (of lambda-term-graphs) that is closed under homomorphism? We systematically examine whether a number of classes of lambda-term-graphs have this property, and we find a particular class of lambda-term-graphs that satisfies this criterion. Term graphs of this class are built from application, abstraction, variable, and scope-delimiter vertices, and have the characteristic feature that the latter two kinds of vertices have back-links to the corresponding abstraction. This result puts a handle on the concept of subterm sharing for higher-order term graphs, both theoretically and algorithmically: We obtain an easily implementable method for obtaining the maximally shared form of lambda-ho-term-graphs. Also, we open up the possibility to pull back properties from first-order term graphs to lambda-ho-term-graphs. In fact we prove this for the property of the sharing-order successors of a given term graph to be a complete lattice with respect to the sharing order. This report extends the paper with the same title (http://arxiv.org/abs/1302.6338v1) in the proceedings of the workshop TERMGRAPH 2013.Comment: 35 pages. report extending proceedings article on arXiv:1302.6338 (changes with respect to version v2: added section 8, modified Proposition 2.4, added Remark 2.5, added Corollary 7.11, modified figures in the conclusion

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164
    • …
    corecore