3,600 research outputs found

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P-G(q) for the generalized theta graphs Theta((s.p)) are taken together, dense in the whole complex plane with the possible exception of the disc \q - l\ < l. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z(G)(q,upsilon) outside the disc \q + upsilon\ < \upsilon\. An immediate corollary is that the chromatic roots of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem oil the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof

    Chromatic roots are dense in the whole complex plane

    Get PDF
    I show that the zeros of the chromatic polynomials P_G(q) for the generalized theta graphs \Theta^{(s,p)} are, taken together, dense in the whole complex plane with the possible exception of the disc |q-1| < 1. The same holds for their dichromatic polynomials (alias Tutte polynomials, alias Potts-model partition functions) Z_G(q,v) outside the disc |q+v| < |v|. An immediate corollary is that the chromatic zeros of not-necessarily-planar graphs are dense in the whole complex plane. The main technical tool in the proof of these results is the Beraha-Kahane-Weiss theorem on the limit sets of zeros for certain sequences of analytic functions, for which I give a new and simpler proof.Comment: LaTeX2e, 53 pages. Version 2 includes a new Appendix B. Version 3 adds a new Theorem 1.4 and a new Section 5, and makes several small improvements. To appear in Combinatorics, Probability & Computin

    On the chromatic roots of generalized theta graphs

    Full text link
    The generalized theta graph \Theta_{s_1,...,s_k} consists of a pair of endvertices joined by k internally disjoint paths of lengths s_1,...,s_k \ge 1. We prove that the roots of the chromatic polynomial $pi(\Theta_{s_1,...,s_k},z) of a k-ary generalized theta graph all lie in the disc |z-1| \le [1 + o(1)] k/\log k, uniformly in the path lengths s_i. Moreover, we prove that \Theta_{2,...,2} \simeq K_{2,k} indeed has a chromatic root of modulus [1 + o(1)] k/\log k. Finally, for k \le 8 we prove that the generalized theta graph with a chromatic root that maximizes |z-1| is the one with all path lengths equal to 2; we conjecture that this holds for all k.Comment: LaTex2e, 25 pages including 2 figure

    A class of trees determined by their chromatic symmetric functions

    Full text link
    Stanley introduced the concept of chromatic symmetric functions of graphs which extends and refines the notion of chromatic polynomials of graphs, and asked whether trees are determined up to isomorphism by their chromatic symmetric functions. Using the technique of differentiation with respect to power-sum symmetric functions, we give a positive answer to Stanley's question for the class of trees with exactly two vertices of degree at least 3. In addition, we prove that for any tree TT, the generalized degree sequence for subtrees of TT is determined by the chromatic symmetric function of TT, providing evidence to a conjecture of Crew
    corecore