2,556 research outputs found

    Online dictionary learning for kernel LMS. Analysis and forward-backward splitting algorithm

    Full text link
    Adaptive filtering algorithms operating in reproducing kernel Hilbert spaces have demonstrated superiority over their linear counterpart for nonlinear system identification. Unfortunately, an undesirable characteristic of these methods is that the order of the filters grows linearly with the number of input data. This dramatically increases the computational burden and memory requirement. A variety of strategies based on dictionary learning have been proposed to overcome this severe drawback. Few, if any, of these works analyze the problem of updating the dictionary in a time-varying environment. In this paper, we present an analytical study of the convergence behavior of the Gaussian least-mean-square algorithm in the case where the statistics of the dictionary elements only partially match the statistics of the input data. This allows us to emphasize the need for updating the dictionary in an online way, by discarding the obsolete elements and adding appropriate ones. We introduce a kernel least-mean-square algorithm with L1-norm regularization to automatically perform this task. The stability in the mean of this method is analyzed, and its performance is tested with experiments

    Recursive Sparse Point Process Regression with Application to Spectrotemporal Receptive Field Plasticity Analysis

    Full text link
    We consider the problem of estimating the sparse time-varying parameter vectors of a point process model in an online fashion, where the observations and inputs respectively consist of binary and continuous time series. We construct a novel objective function by incorporating a forgetting factor mechanism into the point process log-likelihood to enforce adaptivity and employ â„“1\ell_1-regularization to capture the sparsity. We provide a rigorous analysis of the maximizers of the objective function, which extends the guarantees of compressed sensing to our setting. We construct two recursive filters for online estimation of the parameter vectors based on proximal optimization techniques, as well as a novel filter for recursive computation of statistical confidence regions. Simulation studies reveal that our algorithms outperform several existing point process filters in terms of trackability, goodness-of-fit and mean square error. We finally apply our filtering algorithms to experimentally recorded spiking data from the ferret primary auditory cortex during attentive behavior in a click rate discrimination task. Our analysis provides new insights into the time-course of the spectrotemporal receptive field plasticity of the auditory neurons

    Using the LASSO's Dual for Regularization in Sparse Signal Reconstruction from Array Data

    Full text link
    Waves from a sparse set of source hidden in additive noise are observed by a sensor array. We treat the estimation of the sparse set of sources as a generalized complex-valued LASSO problem. The corresponding dual problem is formulated and it is shown that the dual solution is useful for selecting the regularization parameter of the LASSO when the number of sources is given. The solution path of the complex-valued LASSO is analyzed. For a given number of sources, the corresponding regularization parameter is determined by an order-recursive algorithm and two iterative algorithms that are based on a further approximation. Using this regularization parameter, the DOAs of all sources are estimated.Comment: submitted to IEEE Transactions on Signal Processing, 09-Aug-201

    Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset

    Full text link
    Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix in a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.Comment: 121 pages, 5 figures, submitted to Computer Science Review. arXiv admin note: text overlap with arXiv:1312.7167, arXiv:1109.6297, arXiv:1207.3438, arXiv:1105.2126, arXiv:1404.7592, arXiv:1210.0805, arXiv:1403.8067 by other authors, Computer Science Review, November 201

    Recursive Recovery of Sparse Signal Sequences from Compressive Measurements: A Review

    Full text link
    In this article, we review the literature on design and analysis of recursive algorithms for reconstructing a time sequence of sparse signals from compressive measurements. The signals are assumed to be sparse in some transform domain or in some dictionary. Their sparsity patterns can change with time, although, in many practical applications, the changes are gradual. An important class of applications where this problem occurs is dynamic projection imaging, e.g., dynamic magnetic resonance imaging (MRI) for real-time medical applications such as interventional radiology, or dynamic computed tomography.Comment: To appear in IEEE Trans. Signal Processin

    Online Nonlinear Estimation via Iterative L2-Space Projections: Reproducing Kernel of Subspace

    Full text link
    We propose a novel online learning paradigm for nonlinear-function estimation tasks based on the iterative projections in the L2 space with probability measure reflecting the stochastic property of input signals. The proposed learning algorithm exploits the reproducing kernel of the so-called dictionary subspace, based on the fact that any finite-dimensional space of functions has a reproducing kernel characterized by the Gram matrix. The L2-space geometry provides the best decorrelation property in principle. The proposed learning paradigm is significantly different from the conventional kernel-based learning paradigm in two senses: (i) the whole space is not a reproducing kernel Hilbert space and (ii) the minimum mean squared error estimator gives the best approximation of the desired nonlinear function in the dictionary subspace. It preserves efficiency in computing the inner product as well as in updating the Gram matrix when the dictionary grows. Monotone approximation, asymptotic optimality, and convergence of the proposed algorithm are analyzed based on the variable-metric version of adaptive projected subgradient method. Numerical examples show the efficacy of the proposed algorithm for real data over a variety of methods including the extended Kalman filter and many batch machine-learning methods such as the multilayer perceptron.Comment: Published in IEEE Trans. Signal Processing This is not the published version, but is the accepted version. Please refer https://ieeexplore.ieee.org/document/8379456/?arnumber=8379456&source=authoralert for the published versio

    Boosting of Image Denoising Algorithms

    Full text link
    In this paper we propose a generic recursive algorithm for improving image denoising methods. Given the initial denoised image, we suggest repeating the following "SOS" procedure: (i) (S)trengthen the signal by adding the previous denoised image to the degraded input image, (ii) (O)perate the denoising method on the strengthened image, and (iii) (S)ubtract the previous denoised image from the restored signal-strengthened outcome. The convergence of this process is studied for the K-SVD image denoising and related algorithms. Still in the context of K-SVD image denoising, we introduce an interesting interpretation of the SOS algorithm as a technique for closing the gap between the local patch-modeling and the global restoration task, thereby leading to improved performance. In a quest for the theoretical origin of the SOS algorithm, we provide a graph-based interpretation of our method, where the SOS recursive update effectively minimizes a penalty function that aims to denoise the image, while being regularized by the graph Laplacian. We demonstrate the SOS boosting algorithm for several leading denoising methods (K-SVD, NLM, BM3D, and EPLL), showing tendency to further improve denoising performance.Comment: 33 pages, 9 figures, 3 tables, submitted to SIAM Journal on Imaging Science

    Online Low-Rank Subspace Learning from Incomplete Data: A Bayesian View

    Full text link
    Extracting the underlying low-dimensional space where high-dimensional signals often reside has long been at the center of numerous algorithms in the signal processing and machine learning literature during the past few decades. At the same time, working with incomplete (partly observed) large scale datasets has recently been commonplace for diverse reasons. This so called {\it big data era} we are currently living calls for devising online subspace learning algorithms that can suitably handle incomplete data. Their envisaged objective is to {\it recursively} estimate the unknown subspace by processing streaming data sequentially, thus reducing computational complexity, while obviating the need for storing the whole dataset in memory. In this paper, an online variational Bayes subspace learning algorithm from partial observations is presented. To account for the unawareness of the true rank of the subspace, commonly met in practice, low-rankness is explicitly imposed on the sought subspace data matrix by exploiting sparse Bayesian learning principles. Moreover, sparsity, {\it simultaneously} to low-rankness, is favored on the subspace matrix by the sophisticated hierarchical Bayesian scheme that is adopted. In doing so, the proposed algorithm becomes adept in dealing with applications whereby the underlying subspace may be also sparse, as, e.g., in sparse dictionary learning problems. As shown, the new subspace tracking scheme outperforms its state-of-the-art counterparts in terms of estimation accuracy, in a variety of experiments conducted on simulated and real data

    Sparsity-Aware Learning and Compressed Sensing: An Overview

    Full text link
    This paper is based on a chapter of a new book on Machine Learning, by the first and third author, which is currently under preparation. We provide an overview of the major theoretical advances as well as the main trends in algorithmic developments in the area of sparsity-aware learning and compressed sensing. Both batch processing and online processing techniques are considered. A case study in the context of time-frequency analysis of signals is also presented. Our intent is to update this review from time to time, since this is a very hot research area with a momentum and speed that is sometimes difficult to follow up

    Generalized Gaussian Kernel Adaptive Filtering

    Full text link
    The present paper proposes generalized Gaussian kernel adaptive filtering, where the kernel parameters are adaptive and data-driven. The Gaussian kernel is parametrized by a center vector and a symmetric positive definite (SPD) precision matrix, which is regarded as a generalization of the scalar width parameter. These parameters are adaptively updated on the basis of a proposed least-square-type rule to minimize the estimation error. The main contribution of this paper is to establish update rules for precision matrices on the SPD manifold in order to keep their symmetric positive-definiteness. Different from conventional kernel adaptive filters, the proposed regressor is a superposition of Gaussian kernels with all different parameters, which makes such regressor more flexible. The kernel adaptive filtering algorithm is established together with a l1-regularized least squares to avoid overfitting and the increase of dimensionality of the dictionary. Experimental results confirm the validity of the proposed method
    • …
    corecore