9 research outputs found

    On Sparse Vector Recovery Performance in Structurally Orthogonal Matrices via LASSO

    Get PDF
    In this paper, we consider the compressed sensing problem of reconstructing a sparse signal from an undersampled set of noisy linear measurements. The regularized least squares or least absolute shrinkage and selection operator (LASSO) formulation is used for signal estimation. The measurement matrix is assumed to be constructed by concatenating several randomly orthogonal bases, which we refer to as structurally orthogonal matrices. Such measurement matrix is highly relevant to large-scale compressive sensing applications because it facilitates rapid computation and parallel processing. Using the replica method in statistical physics, we derive the mean-squared-error (MSE) formula of reconstruction over the structurally orthogonal matrix in the large-system regime. Extensive numerical experiments are provided to verify the analytical result. We then consider the analytical result to investigate the MSE behaviors of the LASSO over the structurally orthogonal matrix, with an emphasis on performance comparisons with matrices with independent and identically distributed (i.i.d.) Gaussian entries. We find that structurally orthogonal matrices are at least as good as their i.i.d. Gaussian counterparts. Thus, the use of structurally orthogonal matrices is attractive in practical applications

    Channel Estimation via Gradient Pursuit for MmWave Massive MIMO Systems with One-Bit ADCs

    Full text link
    In millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, one-bit analog-to-digital converters (ADCs) are employed to reduce the impractically high power consumption, which is incurred by the wide bandwidth and large arrays. In practice, the mmWave band consists of a small number of paths, thereby rendering sparse virtual channels. Then, the resulting maximum a posteriori (MAP) channel estimation problem is a sparsity-constrained optimization problem, which is NP-hard to solve. In this paper, iterative approximate MAP channel estimators for mmWave massive MIMO systems with one-bit ADCs are proposed, which are based on the gradient support pursuit (GraSP) and gradient hard thresholding pursuit (GraHTP) algorithms. The GraSP and GraHTP algorithms iteratively pursue the gradient of the objective function to approximately optimize convex objective functions with sparsity constraints, which are the generalizations of the compressive sampling matching pursuit (CoSaMP) and hard thresholding pursuit (HTP) algorithms, respectively, in compressive sensing (CS). However, the performance of the GraSP and GraHTP algorithms is not guaranteed when the objective function is ill-conditioned, which may be incurred by the highly coherent sensing matrix. In this paper, the band maximum selecting (BMS) hard thresholding technique is proposed to modify the GraSP and GraHTP algorithms, namely the BMSGraSP and BMSGraHTP algorithms, respectively. The BMSGraSP and BMSGraHTP algorithms pursue the gradient of the objective function based on the band maximum criterion instead of the naive hard thresholding. In addition, a fast Fourier transform-based (FFT-based) fast implementation is developed to reduce the complexity. The BMSGraSP and BMSGraHTP algorithms are shown to be both accurate and efficient, whose performance is verified through extensive simulations.Comment: to appear in EURASIP Journal on Wireless Communications and Networkin
    corecore