2 research outputs found

    Constructions of q-Ary Constant-Weight Codes

    Full text link
    This paper introduces a new combinatorial construction for q-ary constant-weight codes which yields several families of optimal codes and asymptotically optimal codes. The construction reveals intimate connection between q-ary constant-weight codes and sets of pairwise disjoint combinatorial designs of various types.Comment: 12 page

    Mutually unbiased maximally entangled bases from difference matrices

    Full text link
    Based on maximally entangled states, we explore the constructions of mutually unbiased bases in bipartite quantum systems. We present a new way to construct mutually unbiased bases by difference matrices in the theory of combinatorial designs. In particular, we establish qq mutually unbiased bases with qβˆ’1q-1 maximally entangled bases and one product basis in CqβŠ—Cq\mathbb{C}^q\otimes \mathbb{C}^q for arbitrary prime power qq. In addition, we construct maximally entangled bases for dimension of composite numbers of non-prime power, such as five maximally entangled bases in C12βŠ—C12\mathbb{C}^{12}\otimes \mathbb{C}^{12} and C21βŠ—C21\mathbb{C}^{21}\otimes\mathbb{C}^{21}, which improve the known lower bounds for d=3md=3m, with (3,m)=1(3,m)=1 in CdβŠ—Cd\mathbb{C}^{d}\otimes \mathbb{C}^{d}. Furthermore, we construct p+1p+1 mutually unbiased bases with pp maximally entangled bases and one product basis in CpβŠ—Cp2\mathbb{C}^p\otimes \mathbb{C}^{p^2} for arbitrary prime number pp.Comment: 24 page
    corecore