8,666 research outputs found

    Weighted Schatten pp-Norm Minimization for Image Denoising and Background Subtraction

    Full text link
    Low rank matrix approximation (LRMA), which aims to recover the underlying low rank matrix from its degraded observation, has a wide range of applications in computer vision. The latest LRMA methods resort to using the nuclear norm minimization (NNM) as a convex relaxation of the nonconvex rank minimization. However, NNM tends to over-shrink the rank components and treats the different rank components equally, limiting its flexibility in practical applications. We propose a more flexible model, namely the Weighted Schatten pp-Norm Minimization (WSNM), to generalize the NNM to the Schatten pp-norm minimization with weights assigned to different singular values. The proposed WSNM not only gives better approximation to the original low-rank assumption, but also considers the importance of different rank components. We analyze the solution of WSNM and prove that, under certain weights permutation, WSNM can be equivalently transformed into independent non-convex lpl_p-norm subproblems, whose global optimum can be efficiently solved by generalized iterated shrinkage algorithm. We apply WSNM to typical low-level vision problems, e.g., image denoising and background subtraction. Extensive experimental results show, both qualitatively and quantitatively, that the proposed WSNM can more effectively remove noise, and model complex and dynamic scenes compared with state-of-the-art methods.Comment: 13 pages, 11 figure

    Adaptive Higher-order Spectral Estimators

    Full text link
    Many applications involve estimation of a signal matrix from a noisy data matrix. In such cases, it has been observed that estimators that shrink or truncate the singular values of the data matrix perform well when the signal matrix has approximately low rank. In this article, we generalize this approach to the estimation of a tensor of parameters from noisy tensor data. We develop new classes of estimators that shrink or threshold the mode-specific singular values from the higher-order singular value decomposition. These classes of estimators are indexed by tuning parameters, which we adaptively choose from the data by minimizing Stein's unbiased risk estimate. In particular, this procedure provides a way to estimate the multilinear rank of the underlying signal tensor. Using simulation studies under a variety of conditions, we show that our estimators perform well when the mean tensor has approximately low multilinear rank, and perform competitively when the signal tensor does not have approximately low multilinear rank. We illustrate the use of these methods in an application to multivariate relational data.Comment: 29 pages, 3 figure
    corecore