1,967 research outputs found

    Approximate Convex Optimization by Online Game Playing

    Full text link
    Lagrangian relaxation and approximate optimization algorithms have received much attention in the last two decades. Typically, the running time of these methods to obtain a ϵ\epsilon approximate solution is proportional to 1ϵ2\frac{1}{\epsilon^2}. Recently, Bienstock and Iyengar, following Nesterov, gave an algorithm for fractional packing linear programs which runs in 1ϵ\frac{1}{\epsilon} iterations. The latter algorithm requires to solve a convex quadratic program every iteration - an optimization subroutine which dominates the theoretical running time. We give an algorithm for convex programs with strictly convex constraints which runs in time proportional to 1ϵ\frac{1}{\epsilon}. The algorithm does NOT require to solve any quadratic program, but uses gradient steps and elementary operations only. Problems which have strictly convex constraints include maximum entropy frequency estimation, portfolio optimization with loss risk constraints, and various computational problems in signal processing. As a side product, we also obtain a simpler version of Bienstock and Iyengar's result for general linear programming, with similar running time. We derive these algorithms using a new framework for deriving convex optimization algorithms from online game playing algorithms, which may be of independent interest

    Convex-Concave Min-Max Stackelberg Games

    Full text link
    Min-max optimization problems (i.e., min-max games) have been attracting a great deal of attention because of their applicability to a wide range of machine learning problems. Although significant progress has been made recently, the literature to date has focused on games with independent strategy sets; little is known about solving games with dependent strategy sets, which can be characterized as min-max Stackelberg games. We introduce two first-order methods that solve a large class of convex-concave min-max Stackelberg games, and show that our methods converge in polynomial time. Min-max Stackelberg games were first studied by Wald, under the posthumous name of Wald's maximin model, a variant of which is the main paradigm used in robust optimization, which means that our methods can likewise solve many convex robust optimization problems. We observe that the computation of competitive equilibria in Fisher markets also comprises a min-max Stackelberg game. Further, we demonstrate the efficacy and efficiency of our algorithms in practice by computing competitive equilibria in Fisher markets with varying utility structures. Our experiments suggest potential ways to extend our theoretical results, by demonstrating how different smoothness properties can affect the convergence rate of our algorithms.Comment: 25 pages, 4 tables, 1 figure, Forthcoming in NeurIPS 202

    Randomized Lagrangian Stochastic Approximation for Large-Scale Constrained Stochastic Nash Games

    Full text link
    In this paper, we consider stochastic monotone Nash games where each player's strategy set is characterized by possibly a large number of explicit convex constraint inequalities. Notably, the functional constraints of each player may depend on the strategies of other players, allowing for capturing a subclass of generalized Nash equilibrium problems (GNEP). While there is limited work that provide guarantees for this class of stochastic GNEPs, even when the functional constraints of the players are independent of each other, the majority of the existing methods rely on employing projected stochastic approximation (SA) methods. However, the projected SA methods perform poorly when the constraint set is afflicted by the presence of a large number of possibly nonlinear functional inequalities. Motivated by the absence of performance guarantees for computing the Nash equilibrium in constrained stochastic monotone Nash games, we develop a single timescale randomized Lagrangian multiplier stochastic approximation method where in the primal space, we employ an SA scheme, and in the dual space, we employ a randomized block-coordinate scheme where only a randomly selected Lagrangian multiplier is updated. We show that our method achieves a convergence rate of O(log(k)k)\mathcal{O}\left(\frac{\log(k)}{\sqrt{k}}\right) for suitably defined suboptimality and infeasibility metrics in a mean sense.Comment: The result of this paper has been presented at International Conference on Continuous Optimization (ICCOPT) 2022 and East Coast Optimization Meeting (ECOM) 202
    corecore